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ABSTRACT

Let T be a complete theory of linear order; the language of 7" may contain a
finite or a countable set of unary predicates. We prove the following results.
(i) The number of nonisomorphic countable models of T'is either finite or 2%,
(i) If the language of T is finite then the number of nonisomorphic countable
models of T'is either 1 or 2%, (iii) If $1(7T") is countable then so is S,(T) for
every n. (iv) Incase S1(T)is countable we find a relation between the Cantor
Bendixon rank of §;(7)and the Cantor Bendixon rank of S,(7T). (v) We define
a class of models &, and show that S;(7")is finite iff the models of T belong to.&.
We conclude that if S;(7T) is finite then T is finitely axiomatizable. (vi) We
prove some theorems concerning the existence and the structure of saturated
models.

Introduction

In this paper we deal with complete theories whose models are of the type
N =<4, <”,P911, -+«> where <¥ linearly orders A, and {Py,,P,-} is a
finite or a countable set of unary predicates. In a well-known example Ehrefeucht
shows that, for every positive n # 2 there is a theory T as mentioned above
which has exactly n nonisomorphic countable models. In Section 6 we shall show
that every such T has either finitely many nonisomorphic countable models or 2
nonisomorphic countable models. We thus obtain a complete answer to the
question: given a cardinal « is there a theory T, as mentioned above, such that T
has exactly o nonisomorphic countable models.

If the language of T is finite we shall sharpen our result and prove that either
T is w-categorical or T has 2° nonisomorphic countable models.

t Most of the results in this paper appeared in the author’s Master of Science thesis which
was prepared at the Hebrew University under the supervision of Professor H. Gaifman.

Received February 5, 1973
392



Vol. 17, 1974 THEORIES OF LINEAR ORDER 393

In Section 5 we characterize the complete theories of linear order T whose
language contains a fixed finite set of unary predicates, and for which S,(T) is
finite. We define the class %', as the smallest class of models which contains
all the models with a single element and which is closed under the following
operations.

1 sUAUB)=A+B

2 AU, W)= X, oW, whereQ is the ordered set of rationals and the
family {{r| N =~ QI,-}| i = 1,---,n} is a partition of @ consisting of dense subsets
of Q.

(3 z(W = A-Z, where Z is the ordered set of the integers.

We shall show: (i) For T, as above, the following conditions are equivalent.

Condition I. S,(T) is finite.

Condition II. T has a model which belongs to &’.

The following results will be then inferred. (ii) If S;(7T) is finite then T's finitely
axiomatizable. (iii) For every n the set {T| | Sy(T)| < n} is finite. () and (i)
are related to [6] and [4].

Rosenstein in [6] showed that if we define .# to be the subclass of &’ which
is closed only under operations (1) and (2) then T'is w-categorial iff T has a model
which belongs to .# . Rosenstein also showed that if T is w-categorial then it is
finitely axiomatizable; (ii) extends this result. Laiichli and Leonard in [4] define
another class of models A4 such that#” 2 &’. They replace the operation (3)
by the poerations
4 o) = A w,

) o*(W) = A - w*,

and define 4" as the smallest class which is closed under (1), (2), (4), and (5).
They prove that every sentence which is true in some linearly ordered set is also
true in some model which belongs to A4”. So they conclude that every complete
theory which is finitely axiomatizable has a model which belongs to.4#". However
it is not true that the complete theory of every model in .4 is finitely axiomati-
zable, (take for instance w + *).

In Section 7 we show that if T is a complete theory of linear order with not
more than @ unary predicates and || Sy(T) | < o then | S(T) | < o for every n.
Indeed, the difficulty is in going from S,(T) to S,(T). Another question of the
same nature is whether the statement that F(T) is atomic implies that F(T)
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is atomic. The answer to this question is negative; there is a complete theory
of linear order T such that F,(T) is atomic and F,(T) is atomless.

We shall measure the size of S,(T) by its Cantor-Bendixon rank (see the def-
inition in Section 7). We shall prove the following theorem: if T is a theory of
linear order (again with £ o unary predicates), S;(7T) is countable and the rank
of S,(T) is less than v, then the rank of S,(T) is less than v*-4 + 20.

In Sections 2, 3, and 4 we shall develop the basic notions of this paper. In Sec-
tion 2 we deal with the properties of sums, with convex submodels, and with
testing formulas.

We shall call a model U selfadditive (hereafter abbreviated SA) if whenever
B = Athen A + B> N,B. In Section 3 we shall prove that if ” A ” > 1, then
A is SA iff it has no convex definable subsets other than (f and I ‘ZI] We shall
prove some other useful results concerning SA models.

In Section 4 we deal with saturated models. Roughly speaking, an w-saturated
model is the sum of its definable elements and some SA submodels. Each sum-
mand in this decomposition is the intersection of definable convex sets; we call
these summands kernels. By means of Theorem 4.11 and Corollary 4.12 we
find in which cardinalities a complete theory of linear order T has a y-saturated
model. In Theorem 4.14 we show that every « elementarily equivalent,
y-saturated infinite models of cardinality less than or equal to « have a com-
mon elementary extension of cardinality « which is y-saturated.

We mention two open questions:

(i) Suppose we define the rank R(X) of a topological space X to be the first
v such that D’(X) = D"*!(X) where D*(X) is the Cantor Bendixon derivative
of X of order v. Is there still a function f: w; — o, such that for S;(T) (not
necessarily countable) R(S,(T)) <v implies R(Sy(T)) <f(¥)?

The following question was first asked by Laiichli and Leonard in [4].

(i) Suppose that ¢ is a sentence which is consistent with the axioms of linear
order. Is there always a sentence Y such that -y — ¢ and y is a finite axioma-
tization of a complete theory of linear order?

We believe the answer to both questions is positive.
ReMARK. After the manuscript was completed, S. Shelah proved that ques-

tion (ii) has a positive answer, that is, there is always a y which is an axioma-
tization of a complete theory of linear order such that Fy F ¢.
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1. Preliminaries and notation

Ordinals will be denoted by letters v, £, , §. Cardinals are defined to be initial
ordinals, a, B, y denote infinite cardinals, w denotes the first infinite cardinal,
oc'ﬂ= X ,<pa” Natural numbers are denoted by i, j, k, /, m, n. The cardinality
of a set 4 is denoted by | A[. If A is a model we denote its cardinality
by | %
nation of 4 and b. If X is a topological space and 4 < X then cl(4, X) and
int(4, X) denote the closure of 4 in X and the interior of A in X respectively.

, d,b, P,--- will always denote finite sequences, d~b is the concate-

Our language is always a first order language with equality. We use
0,00, Uy Uy Ugytyy s X, X0, X1, Vs Vos V1s " 2520, 21, ++ as individual variables.

If not otherwise stated, the nonlogical symbols in our language will always
be: one binary predicate <, and a set {P,-| i <v} of unary predicates where
0 £ v £ w. We shall occasionally call such a language a typical language. We
make the following conventions: if not otherwise stated, a model always means
a model in a typical language; a language always means a typical language,
L and L’ denote typical languages. If U is a model then L(A) and Ty denote
the language of A and the complete theory of U respectively. A theory always
means a complete theory in a typical language which contains the axiom saying
that < linearly orders the whole universe. T and T’ denote theories. The uni-
verse of a model U is denoted by IQI[ A= UA,<,P>,B =(B,<,P >,
€ =<C <,P,>, D =<(D,<,Py,--yand & = (K, <, Py, ) denote models;
subscripts and superscripts may be added. The definition of some B < |91|
automatically implies a definition of the model B, which is the submodel of U
whose universe is B. The interpretation of the predicate R in the model ¥ is
denoted by R, the interpretation of < in 9 is denoted by <™, but, naturally
we omit the superscript A when no confusion may arise. We always interpret
< as a linear order whose domain is the whole universe.

If L = L(N) then U [ Ldenotes the model obtained from 2 by restricting the
interpretation to the symbols of L. If a ] QI| we occasionally enrich U by adding
an individual constant to L(?) and interpreting it as a. It will always be under-
stood that 4 denotes this new constant and 4 is interpreted in A as a. If
al,---,anelﬂll then (U, <ay,-+,a,)) denotes the model obtained from U by
adding individual constants to represent a,, -+, a,. B< WA, B <A, B = AU, Bx=A
respectively denote that B is a submodel of A, B is an elementary submodel
of A, B is elementarily equivalent to A and B is isomorphic to A. B <, A
means that g is an elementary embedding of B into ; when there is no risk of
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confusion, we shall omit the g. B <, U means that g is a monomorphism of B into
A If {A, |v < n} is a chain of models then {J, <, U, denotes the union of this chain.
If for every iew, ;= ,, ;1 then J;  o(U;, g;) denotes the limit of this sequence.

We define the quantifier depth of a formula and denote it by d(¢) . If ¢ is atomic
then d(¢) =0; d@x¢)=d(Vx¢)=d(@) +1; dl¢ —» ¥) = d¢VY) =
d(¢ A V) = max(d(9),d)); and d(~ ¢) = d(¢). We say that A =B, if for
every sentence ¢, if d(¢) < n, then ¢ Ty iff ¢peT.

Let <ay, -, a,>e|A|" and (by,-,b,>e|B|"; we say that <a,,-,a,) =
{by, -+, b,y if the function a; — b;i =1, ---, n is an isomorphism of A’ and
B’ where U’ and B’ are the submodels of A and B whose universes are {a, -, a,}
and {bi,---,bn} respectively.

Let @ be a set of formulas, possibly with parameters from ]i’II, and for each
¢ €®, ¢ has its free variables among {vy,--,v,_1}. Let de I ‘III"; we write
Ak ®[4] to denote that for every ¢ e ®@, (U, b) F p[d], where b is the sequence
of the parameters which occur in- ¢p. We shall say that @ is finitely satisfiable in
N, or @ is a type in A if for every finite O, < ® there is de A" such that
Wk Dy[a]. Suppose B < Ii’Il, we shall say that @ is finitely satisfiable in B
relative to U if for every finite ®, = @ there is b € B" such that A F ®[5]; we omit
the reference to U when there is no risk of confusion. Let B = l A I; we say that
@ is a complete type with n variables over Bif @ is a type in U and for every
¢(vg, *++, U, 1) with parameters in B either ¢ ® or ~ ¢pc®. We say that 4
realizes @ in U if A F ®[4], ® is realized in W if there is de A" such that Ak
®[a], @ is realized in B relative to 2 iff there is b€ B” such that 9k ®[5].

Let F,(T) be the Lindenbaum algebra over T of formulas whose free variables
are among {v,,-**,0,-}; we identify the elements of F,(T)with the formulas of
which they consist. S,(T) denotes the Stone space of F,(T). We identify S(T)
with the set of complete types with n variables over the empty set. We regard S,(T)
as a topological space; the topology is always understood to be the Stone topology.
Thus S(T) is a compact Hausdorff totally disconnected space. We say that
S,(T) is atomic if F,(T) is atomic, that is, S,(T) is atomic iff the set of isolated
points is dense in S,(T). Trivially S,(T) has a countable basis of open sets.

Let U be a model of T, and dec A"; then P(d4, %) is the single type in S, (T)
which is realized by 4. If ae 4 then P(a, ) = P({a), ), if B< A then
P(B, W) = {P(b, ‘2[)] beB}. Let P and Q be types in U; we say that Q supports
P if for every B> U and every be B* B k Q[b] implies B k P[b].
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DerINITION (i) U is called y-saturated if for every B = A (such that | B| <7)
and for every type ® in U (with one variable and parameters in B) there is ac 4
such that Ak ®fa].

(i) A is called y-homogeneous if for every B & A4 (such that “ B || <y) and
for every f: B — A, if P({by, -, b0, W) = Pf(by), -, f(b,)), %) for every n
and by,--, b, B then there is an automorphism f of ¥ such that 72 f.

Let 2 be a model, ® a set of formulas whose free variables are among {vo, -+, ,}
and deA". We define ||y, = {b|bed and Ar®[b,al}. |Alsar | U o>
|QI]¢, etc., abbreviate I‘JI ]{4,,,,;, IQIIQ,,(,,) , | 9I|¢,A , etc., where A denotes the empty
sequence. We shall write gz A, ., etc. to denote the submodel of A whose
universe is IQI]M, |%[|¢,a, etc. respectively. The notation U, ; always implies
that |UAle; # &.

B < || is said to be definable over 4 in U if there is ¢ such that B = | A |, .
B is said to be definable in A if B = |?I|¢ for some ¢. be [ 91[ is definable over
a if {b} is definable over 4, and b is definable in U if {b} is definable in A. Let
¢(v,, d) be a formula with parameters from 2, and let ¥(x,, ---, x,) be any form-
ula. We define the relativization of  to ¢ to be the formula y which expresses
the fact that x,,---,x; satisfy ¥ in the submodel 2, ;; that is, for every
be(U)y) | Uyt wiB] iff Ak 2[6].

We turn to linearly ordered sets. If not otherwise stated, < denotes a linear
order. <, >, =, <, %, have their conventional meanings. Let U be a model,
a,be A and a < b; then (a,U,b), [, U, b], (a, A, b], (a, %}, [a,YA|, | WD),
and |, b] respectively denote the sets {c|ced and a <c < b}, {clceA and
a<c<b}, {c|ced and a<c< b}, {c|ccd and c>a}, {c|ced and
c2a}, {c|cedand b>c}, and {c|cedand b2 c}. If B<S | 2| we define
conv(B, W) = {c]ceA and b; £ ¢ < b, for some b;,b,cB}. When there is
no risk of confusion we omit the U from our notation, so the abbreviated no-
tation will be (a, b), (a,b], etc., (a ] R ’b] , etc., and conv(B).

Let A be a model. We define a partial order of the subsets of | A | :if B,C < | ‘1I|
then we say that B < C if b < ¢ for every be B and every ceC; we say that
B < Cif b £ cforevery beB and ce C. We say that a < B if {a} < B, etc.
We say that B 4 C if it is not true that B< C. Let B ¢ IQII, we say that B is
bounded from above, if there is a € A such that B < a; Bis bounded from below,
if there is a € A such that a £ B; B is bounded if B is bounded from above and

from below.
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Let {I, <) be a linearly ordered set. For every i €I, let 9, be in the language L.
Assuming that 4, A; = & for every i # j we define A = X, ;U; to be the
following model: |‘21| =J;cr 4. a <" b if there is i such that a <™b, or
acA;bed;and i <j. For every unary predicate Pof L, P* = U’ P%. % is
called the sum of the %;’s. By A + B we always mean that the elements of B
are greater than the elements of 4.

Let € = {C, <) be a linearly ordered set, and U a model in any typical lan-
guage L. We define the model B = A-C. B is a model in the language L.
B = X ..cA. where forevery ce C, A, is a copy of U.

We need a fixed notation for two particular ordered sets, namely, the integers
and the rationals. {Z, <> and (@, <) denote these ordered sets respectively,
However, we shall always write Z to denote {Z, <> and @ to denote {Q, <).
If A = {4, <) is a linearly ordered set then A* = (4, <*) denotes the ordered
set obtained by reversing the order of U, thatis, a <*bif b<a.

2, Convex sets and the properties of sums

DerFINITION. Let 9 be a model and B < A. B is called a convex subset of
A if for every by,b,eB, if be[by,b,] then beB. B < A is called a convex
submodel of U, if l%] is a convex subset of UA. We write B ¢ U to denote B
is a convex submodel of U, and B ¢, A to denote that g is a monomorphism
of B into A with a convex range.

REMARK. We may give a general definition of a convex submodel: B = UA
is a convex submodel of 9 if for every n, k, de(A—B)" and by, b, € B*, if b; = b,,
then d Al‘?l ~g Al32. Many results in this section can be formulated so that they
will hold for the more general notion of a convex submodel.

The nice properties of sums of models result from the fact that each summand
is a convex submodel of the sum.

We list some well known facts about sums. Proofs may be found in [2, (5.1),
(5.2)], however the reader will find it very easy to prove the lemma, using Ehren-
feucht’s criterion.

THEOREM 2.1. Let {I, <) be an ordered set; for every icl let W, B, be
models in the language L and G, A}, b,eBf. Let A = X, . W, B = X,.:B;;
then

(1) if for every icl, ;= B;, then A = B.
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(D) if for every icl, W=, and for some iy, -, i el, (W;,d )= (B, b,)
where j = 1,--,m, then (U, dd.,--d;) = (B,5,b,,-+35, ).

(iii) (i) and (ii) are true when = is replaced by =.

(iv) if for every i, ; < B, then A <B.

The following lemma can be inferred from [2, (4.7). (4.8)]. We prefer, however,
to give a proof of our own.

THEOREM 2.2. Let L(W) be finite, and B ¢ A. For every m =0 and
1 2 1 there is a finite set of formulas ®"™ such that for every k = 0 and for
every formula ¢(vy,---,v;,%y,++,Xx,) with at most m quantifiers and for every
ae(A—B)* there is ¢*(vy,++,v;)€ O™ such that for every beB' Wk ¢[b,d]
iff BF ¢*[b].

PrOOF. We proof by induction on m that the theorem is true for m and for
every I. For m = 0, let ®"° be a finite set of formulas without quantifiers
with free variables among {v,,--,v,}, such that for every formula without quan-
tifiers Y(v,, -, v,) there is ¢ € ®"? such that 4 ¢ «— . Obviously, ®"° has the
desired properties.

Suppose the induction hypothesis is true for m. Let © = ©""U{3v,, |y e ©** 1"}
and

@'+l - {i\;}l A AEAR= @} U {~i£/1wi|{l/f1,~--,tlfn} s 9}-

Certainly ®"™*! is finite. Let Xy, 0, %4, 00, %) be a formula with m + 1
1

quantifiers, and let d € (4 — B)*. We may assume that y = Ay@(vy, =, v, ¥, X1, s %)-
By the induction hypothesis there is a finite set of formulas {{,(v,:-+,0)), ",
Y vy, ,0)} < O™ such that for every ceA—B there is i such that
for every beB' Uk ¢[b,c,a] iff Bk y,[b]. By the induction hypo-
thesis there is Y(vy,v;,+,0;,¥) € @ 71" such that for every beB' and ceB,
Nk @[b,c,a] iff BEY[b,c]. Let x*(vy, -, v) = (Viey ¥,) v Ipy, then
x*€© ™+ and it is easily seen that for every be B, Ak x[b,a] iff Bk y*[5].
Hence the lemma is proved.

Theorem 2.2 was formulated only for finite languages. This was done because
the finiteness of ®"™ was essential to the induction process. However, the main
result of the theorem is also true for infinite languages.

CoROLLARY 2.3. Let U be a model in a finite or infinite language L; let
B c UA. Then for every formula ¢(vy, -, v}, X, X,) and for every de(4—B)*
there is ¢*(vy,+,v) such that for every beB', Ak ¢[b,d] iff Bk ¢*[5].
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Proor. Since Bl L' ¢ A L for any finite sublanguage of L, L, Theorem 2.2
may be applied.

Suppose A, B, ¢, g, and ¢* are as in Corollary 2.3; we then call ¢* the testing
formula of ¢(v,, --+,v;, ) in the convex submodel B .

COROLLARY 2.4. Let L(W) be finite or infinite, let B be a convex subset of
N, ¢ A" and B definable over ¢ in N. Let ¢(vy, -+, v;,%,,+,X,) be a formula
and ae(A—B)*; then there is a formula ¢*(vy,-++,v,,é) such that for every
bed', Wk ¢*[b,c] iff be B' and Ak $[b,d].

PROOF. Let y(vy,¢) define B over ¢. Let ¢y(vy, -+, v;) be the testing formula
of ¢ in B, let ¢,(vy,--+,v,¢) be the relativization of ¢; to x(vy, &) and let
¢* = Al1x(Gv) A ¢y, then ¢* is as desired.

The next lemma roughly states that the testing formulas do not change if we
replace the convex submodels B; of A by elementarily equivalent models B;.

LEMMA 2.5. For every i€l, let B, ¢ U, and if i # j then B,NB; = .
Let B; = B;foreveryicl. Weassumethat ({J ;. B)NA = @.Let W be de-
fined as follows: A’ = (A— U ,;;B)U U;.1B!.Leta’ e A’, and P be a unary
predicate in L(); then a’c P* iffa’ e P"or a’c P®' for some iel. Let a,beA’
then: a <™b iff a <%, 0or a< B'b for some icl, or beB; and a € B} and
B; <%B,, or be B, and a <™B;, or aeBj and B; <¥b; then

() let de(A— UicrB), jel, ¢(vy,,v,,d) and ¢*(vy,---,v) be such
that for every be(B)), Wk ¢[b,a] iff B;F ¢p*[b]; then for every b’ e(B))' A’k
o[5', al iff Bk $¥[5').

(i) ifforsomejeland de(A— U;erB)", B; = |U|,.; then B} = | W',

(i) if (B;,b) = (Bj,6)and B; = |U|,5 then B} = | A, 5.

(iv) suppose again (B;,b) = (B},b"). Let ae(4 — U,.; B)*, and let
vy, v, d) and ¢*(vy,-+,v,,0) be such that WE ¢*[¢,b] iff é¢e(B;) and
Wk @[é,al; then Wk ¢*[¢, 0’ iff ce(B)) and W'k ¢[¢, a].

ProOF.

(i) Weenrich the language of Wand A’. A, will be the model obtained by
enriching ¥ and Aj is the model obtained by enriching U’. For every ac 4
— U ;e 1B let @ be an individual constant, we define ™' = ¥'= 4. For every
iel we add a unary predicate R; (we assume this is a new predicate) and inter-
pret R, as follows: R¥ = B, and R*'= B!. By Ehrenfeucht’s criterion it is
very easy to see that W; = UA;. Since B, is definable in A, there is a sentence
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 in the enriched language which expresses the fact that ¢* is the testing formula
of ¢ in B;. Since A; = A, yis true in A, thus ¢* is the testing formula of ¢
in the submodel of %, whose universe is R}", but this submodel is B hence
(i) is proved.

(ii) and (iii) are simple corollaries of (i). The proof of (iv) is similar to the
proof of (i).

Let A>B > ¢; in the rest of this section we shall find sufficient conditions
for D < Ato be an elementary extension of B or of €.

DerINITON. Let D 2 B; we say that D is a simple extension of B if there are
nod,, d,eD—B and beB such that d;, < b < d,.

DEeFINITION. Let U 2 B; we say that D is a permissible extension of B
relative to W if A 2 D =2 B and for every de D—B

{a|ac A—B, and for every beB a<b iff d <b} < D.

THEOREM 2.6. Let B< U, and let D be a permissible extension of B rel-
ative to U; then B <D < Y.

PrROOF. In order to prove that D > 9 it suffices to show that if ¢(x,, -, X, X)
is any formula, dy,---,d,€D, ac A—D and WF ¢[d,, ---,d,,a], then there is
d e D such that Ak @[d,, -, d,,d]. Without loss of generality d,,--,d;e D—B
and d;,,--,d, € B. We may further assume thatd, < - <d,<a <d,,, - <d,.
Since ® is a permissible extension of B there are b,, b,c B such that
d.<b;<a<b,<d, . We may assume d;., -, d;;€[by,b,] and d; 4, -,
d.¢[b1,b,]. Let @*(by, by, Xisy,+, %45 Xx) be such that for every a,,--a,
beA, UE ¢*[by,b,,ay,---,a,b] iff ay,--,a;, be[by,b,] and Ak ¢[d,,.---,d
Ay A digegs s dip b) .

is

WE Ix d*(by, by, d;t 4,0, di 41, x) and all the parameters in the formula belong
to B; since B < there is de B = D such that WE ¢*[by, by, dyyq, > di1pd],
but then A F ¢[d,,.---,dy,d]. Thus D <A, therefore also B < D.

We list some explicit cases when Theorem 2.6 may be applied.

CorOLLARY 2.7. Let B< N, and let D; = conv(B,N).
D, = {alaeA and a < b for some beB},
D, ={a|lacA and b < a for some beB},
D, ={a|lacA and a<B}UB,
Ds = [by, b,] U B where b;,b,€B.
Then B<LD; <N for i =1,--,5.
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COROLLARY 2.8. Let U be a model of T, P e S,(T) and U omits P; then there
is a simple extension of U, B, such that B> W and P is realized in B.

Proor. Let € > U and P realized in €. Suppose ce C and €F P[c]. Let B
be the simple permissible extension of Y relative to € such that ¢ € B; then clearly,
N <B, and P is realized in B.

Lemma 2.9, Let {Uc}ec, and {B;}ec, be such that Ny, € W, and B, € B,
for every & <&, <v and B; <Y, for every E<v. Let U = ey U; and
B = Us<yB;, then B <UA.

Proor. Let by,---,byeB, acA and Wk $[b,, -+, b, a]. It suffices to see
that there is some beB such that Ak @[by,--+, b, b]. Let & be such that
by, by, a€A;. Since W, € U there is a testing formula ¢* such that for every
ag, 0, Gy €Ay, UFS [as, - aeeq] iff Ay F ¢*[ay, -+, ax4q]. Thus,
A,k IAx p*(by, -+, by, x) . Since B, < W, there is b € By such that W,k ¢*[by, -, by,
b], but then Ak ¢[by,- -, b, b] and the lemma is proved.

THEOREM 2.10. Let B <U and B = B; + €+ B,, then

(i) if D is a permissible extension of € relative to %A and D < conv(C, ),
then € <D.

(i) if D is a permissible extension of B relative to N and D = {al acd
and a £ b for some beB,} then B; <D.

(iii) if D is a permissible extension of B, relative to W and D < {a|a €A
and b £ a for some beB,} then B, <D.

ProoF. (i) Let €, be the submodel of ¥ whose universe is conv(C, ). It
suffices to show that € < &, , for if this is so, and D satisfies the conditions of
(i) then D is a permissible extension of € relative to €, and by Theorem 2.6
€ <D <C,. Let {ce}e<v {de}:<, be sequences in B, such that c;, < ¢;, < dy,
< d,, for every & <& <vand U .., [e;,B,d]=C.

For every £ <v let €; and U, be the submodels of A whose universes are
[ceB,d;] and [c;, A, d;] respectively. Then €; = B, (a0 and U=, a5
where y = ¢; Svo < de. Since € < U it is easy to see that T <U,.
€= U§<V(S§ and €; = U<, ¥U,. thus by Lemma 2.9 € < €,. The proof
of (ii) and (iii) is analogous.

3. Selfadditive models

We shall deal in this section with a special class of models which will be called
selfadditive SA. There are two facts that make SA models important: (i) if W, B
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are elementarily equivalent SA models, then U + B > A, B. (ii). Roughly speak-
ing, every saturated model is the sum of SA models.

LemMA 3.1. Let A=W, +B+N,, and suppose WA>W,;, A,, then
A> Ay + Ay

Proor. It suffices to show that for every formula ¢(x,,y,x,) and for every
a;e A, where i = 1,2, if there is be B such that Wk ¢[ay,b,a,], then there is
c€A; U A, such that Ak ¢[ay,c,a,]. Let ¢*(x,,y) be the testing formula for
&(x1,y,a,) in A, . Suppose by way of contradiction there is be B such that
AE ¢lay,b,a,], but there is no ceAd, such that Ak ¢[a,,c,a,]; then
A, B ~3yd*(ay,y). Since A > Ay, Ak ~ Iyd*(ay, y). Thus Ak ¢play, b,a,]
A ~ dy ¢*(ay, y). We prove that

UEVzIx, Iy(xy <z Ay <z APlx, 0,82 A ~Fud*(xy,u)) €y
If not, then since WA, <A, A, F ~ x. Thus there is d € A, such that
Wy EVx Vy((xy <d Ay <d) = ~(d(x1,y, )\ ~ Judp*(x(,u))).

Since A > A, the same holds in A; but this is impossible since a, <d, b<d
and nevertheless Ak ¢(ay, b,a,) A ~ Jud*(ay,u). Let de A,; we showed that

91‘: 3xl E]y(xl <d /\y <d /\ ¢(x1’y,a2) /\ ~ Hud)*(xl’y));

since ¢* is the testing formula of ¢(xy, y,a,) in A, and d € 4, this is impossible.
So there must be some c € 4, such that A F ¢[a,,c,a,], and the lemma is proved.

THEOREM 3.2. Suppose T has a model containing more than one point,
then the following conditions are equivalent.

(@) If Wis a model of T then N has no definable convex subset other than
lﬂll and .

(il) There are models of T, W, and W such that W + A > A, W and
A A

(iii) For every U, B, if A and B are models of T, then A+ B> AB.

ProOF. Clearly (iii) = (ii); it is also easy to see that (ii) = (i). Suppose that
(i) holds; we show that (iii) holds. It is easy to see that the models of T have no
first and last elements. Further, for every ¢(xy,--+,x,) the sentence

(1) 3xl 3xn¢(x1"“’xn) - Vyaxl o axn( 'Z\l (xi > y) A¢(xl: "':xn))

belongs to T.
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Let U and B be models of T; we assume that AN B = . Let
L =DANUDB)U{i<b|lacd and beB},
where D() denotes the complete diagram of . If T is not consistent then there
is a finite £, = T such that D(A) U X, is not consistent, Without loss of generality

o = {¢(by,-+, b,), 8 <by,-+,d <b,} where ac A and b;e B where i = 1,--,n.
Since the b, do not occur in D(),

D(QI) VX, o Vx, (A (d<xi) -~ ¢(x1,--',x,,)),
i=1

but this contradicts (1). Thus X is consistent.

Let € be a model of ¥. We may assume that W, B <C. Let 4 = {clc <a
for some ae A} and B = {c|b < ¢ for some beB}. We may further assume
that €=A+D+B. By Theorem 2.6 A> A and B > B, thus A+ D + B >
A + D + B and therefore U+ D+B > A,B.By Lemma 3.1 A+ D+ B> A +B
thus A + B > A, B. Hence (1) = (iii) and the theorem is proved.

DerintTION. U is called selfadditive if (i), (ii), or (iii) of Theorem 3.2 holds
for Tg[.

COROLLARY 3.3. If % is S4 and w-saturated and P € S(Ty) then {a|P(a, %)
= P} is unbounded from above and unbounded from below.

Proor. Use (1) and the w-saturation of 9.

LeMMA 3.4. Let {I, <) be an ordered set. For every i,jel, W, = W; and
A, is SA; then for every J = I Z;., W< X,/ U,

PrOOF. By induction on “ I “ There is no difficulty in proving the theorem
when I is finite. Let ]] I " = o = o and suppose the theorem is true for every
I'suchthat |[I'| <a. Let J< I, A= X;.; Wyand B=X;.; A. We shall
show that B < A. Let {ivlv<oc} = I be a one-to-one enumeration of I,
I, = {i§l€<v} and J,=I,nJ, and let A, = 2., W, B, = 2., %
then by the induction hypothesis

QIO <9I1 < e .<Q[v
§80 '<5~)31 < v <23v
and since A = U ,<, A, and B = U ,<,B,, B <A. Q.E.D.

For the next lemma, new notions and notations will be needed. We confine
our discussion to a fixed but arbitrary typical finite language L. Let L(U) = L

] and %o>%o, ‘Hl>'%1"":%[v>%v'"
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and de A*; the set {¢ | Wk ¢[d] and d(p) < n} is called the n-type of 4 in .
Let us say that the formulas ¢ and  are equivalent, ¢ ~ ¥, iff —¢ < . Let
F,, be the set of all formulas ¢ such that the free variables of ¢ are among
{vo,--sv4—1} and d(¢) £ n, then ~ partitions F,; to a finite number of equiv-
alence classes. Since F,, is closed under A, v and ~, F,; may be considered
as a finite Boolean algebra. Let ¢, be the number of atoms in F,,. For every
n-type P there is an atom of F,,, y such that for every % and every de 4%,
Ak PLa] iff Ak y[d].

We extend our old notation to n-types. If W is a model, ae 4, de A, B< A4,
then P, (4, ), P,(a,A), P,(B,NA) respectively denote the n-type of d, the n-type
of a, and {P,,(b,‘l[)lbeB}.

Let P = (P,,--,P,> be a sequence of types. We shall say that {a,,--, a,>
realizes Prelative to A if a, < a, <+ < a, andforevery i, A k P[a;]. Let B<|UA|;
we shall say that P is realized in B relative to U if there is 5 e B* such that 5
realizes P relative to .

For every n let t, = ¢, ,, We define two sequences s, and u,: sy = uy =0,

Spt1 = 2- Sp '(tun)s'l + 1
Upp1 = Spy1 T U,.

The next lemma is formulated so that it will be easy to prove by induction;
we shall derive from it several corollaries which will be applicable in diverse
cases. It is due to these facts that the formulation of Lemma 3.5 is complicated.

LemMA 35 LaWA=C+ B, A = C+B',B =8B, C=C. Let
bla"'abkeB’ b{,"',b;‘EB', bl =< b2 £ = bk’ b,]. é b2’ é é b;c’ n >0’
and let the following conditions hold:

@) (n,1): for every i, P, (b, ) = P, (b, ).

(ii) (n,2): at least one of the following holds:

(a) Pun(bl’%) = Pun(bia%,)'

(b) P,._,(|B,0),% =P,,_(B,b),%)
and for every Pe(P,,"_I(IEB, by), W) *" Pis realized in |%,b1) and in | B’,b;)
relative to Wand W’ respectively.

@ity (n,3) for every i, 1 £ i<k, one of the following holds:

(@ P, (bybivy>, W = P, (Kb by 1), W),
(b) by # by, by # biyy,
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P, ((bi,b;r), W) = P,,_((b;; b/, ), W)and for every Pe(P,,_ (b b;is1), W)™,
Pis realized in (b, b;, ) and P is realized in (b;, b},,) relative to W and A’
respectively.

Then P,({by,+,b;>,B) = P,(<b1, "+, b;>,B).

PrOOF. We prove by induction on n that the theorem is true for n and for
every k. Suppose first that n = 1. It suffices to show that in Ehrenfeucht’s game
with one step for the models (B,<{b,, -+, b>) and (B, (b}, ---, byy) the second
player has a winning strategy. We may assume that player I chooses by€ B.
Suppose by < b, . By either (ii, a) or (ii,b), for n = 1, there exists by € B’ such
that Py(bg,B’) = Py(by,B) thus{bg, by, -+, by = {by,by,--+,b,> as desired. A
similar argument shows that player II wins also in the cases when bq € (b;, b; 1)
or boe(b;| or by = b;.

Suppose the theorem is true for n and for every k. Let by £ b, £ -+ S b,
and b; £ b; £ -+ £ by satisfy (n+ 1,1), (n+ 1,2) and (n + 1,3). By Ehren-
feucht’s criterion it suffices to show that in Ehrenfeucht’s game with n + 1 steps
for the models (B, {by, -, byy) and (B; (b{,--, b>) player Il has a winning
strategy. By the induction hypothesis, it suffices to show that after the first step
of the game player IT can obtain two k+ 1 tuples (b, by, -+, b,» and {bg, b, -+, b, >
such that b, —» b;, i = 0,1,--,k, is an order isomorphism, and that after the
two k + 1 tuples are arranged in an increasing order they satisfy (n,1), (n,2)
and (n,3).

Without loss of generality, we may assume that player I chooses b,eB.
Suppose by <b; and (n+ 1, 2)(a) holds. Let P = P, ({bo,by), B). Let
¥(ve,vy) be an atom of F,, which generates P. Since u,,, = u,+1,

3”0‘#(00,01) EPu,H.l(bl:%) = Pu,.+1(bi’%,) .

Let by be suchthatB'F y[bg, b1]; hence by is as desired. Suppose b, < b, but
now (n + 1, 2)(b) holds. We distinguish bztween three cases.

Case L. There is Pe(P,,_(|B,b,), W)* which is not realized in (bo,b,). It
is easy to see that there is bg€ A’ such that P, ({bg, by, ') = P, ((bo, by ), N).
Let y/(vy, v,) have the following meaning: v, < vy and P is not realized in (v, v,) .
A direct computation shows that d(Y/) < s, + #,_; = u,, hence € P, (Cbo, by, 20),
hence y € P, ({b5, b} >, W),hence P is not realized in (bg, b;) relative to UA’;
thus byeB’. Let Qe(P,,"_l(|%,b1), W), and let Q4 = P, (b,N); then the
lengthof 07XQ,¥ " Pisless than or equal to s,,;.By(n+1,2)(b) 07 XQo) P
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is realized in |8, b,) and in |Q3’, b)), but (Q,> " P is neither realized in [bg, b,)
nor in [by, b}), thus @ is realized both in |23, bg)and | B’,by) and thus thek + 1
tuples <{bg,*:*, by and {(bg, -, b;» satisfy (n,1), (n,2) and (n,3).

Case 1I. Suppose there exists P e(P,,,,_l(]‘lS,bl), MAWy)*" which is not realized in
[B,bo). Since B’ =B there is boeB’ such that P, (bg,B') = P, (b, B).
Suppose that P is realized in |B’, by). Let P=(Py, -+, P, >, C'<x} < -+ <x}, <b}
and for every i, A'F P[x;]. Since P, (by,B) = P, (bo,B’) and since the sequence
u, increases rapidly enough, there are x,, -+, x,, such that C < x; < x, -+ < x,, <b,
and such that for every i, P,, _, (x;,B)=P,,_, (x;, B'). By Theorem 2.1(iii) for
every i, (U, x)"='(W,x;). However this contradicts the fact that P is not
realized in ’%,bo), hence P is not realized in I%’, by). By an argument similar
to that used in Case I, we conclude that if Qe(Pu"_1(|Q3, by), W)*" then J is
realized in both (by, b,) and (by, b,). It is easy to see that (b, -, b,> and
{by, +-+, byy satisfy (n, 1), (n,2) and (n, 3) as desired.

Case 1I1. Suppose that everyPe(P,,"_l(l%, b)), W)™ is realized in both l%, by)
and (by, by). Let Py=P, (by, N); let O be the concatenation of all the sequences in
(P._.(|B,by), W)™: then the length of § ~(Po) Qisat most2-s,(t, )™ +1=5,4 .
Let £~ Cboy ™ jrealize @ “(P,> " Qin|B’,b}) where by realizes the P, in the
middle. The sequences (b, -, b,» and <bg, -, b satisfy (n,1) (n,2) and (n,3)
as desired.

The cases when the first player chooses some be(b;, b;,,) are analogous to
the cases already considered. The case where b > b, or b = b, for some i is
trivial, hence the lemma is proved.

The following corollaries hold for models in finite or in infinite languages.

CorROLLARY 3.6. If A =C+B, b;,b,eB, P, ) = P(b,,N) and for
everyn, P,,(] B,b,), ‘II)=P,,(I B, b,), W) and for every k,nand Pe (P,,(, B, by, W)F,
P is realized both in |5B, by) and ISB, b,) relative to U, then P(b,,B) = P(b,,B).

Proor. This is almost a special case of Lemma 3.5.

COROLLARY 3.7. If W = € +B, by, by € B, P(by, A) = P(b,, N), P(|B,b,), W
= P(I%, b,), W) and for every k and }_’E(P(lﬂi,bl), MW)*, P is realized both in
|B,b,) and |B,b,), then P(b;,B) = P(b,,B).

Proor. By Corollary 3.6.

CoroLLArY 3.8. If B ¢ Wand B is SA, b, b, € B* and P(b,,N) = P(5,, N),
then P(i)l,SB) = P(i]z,%).



408 M. RUBIN Israel J. Math.,

Proor. Let A = A, + B + A,. Then b,,b, and the decomposition
A=A, + (B + Ay) fulfill the conditions of Lemma 3.5; hence P(b;,B + A,)
= P(b,,B + U,). Applying again Lemma 3.5, now to the decomposition of
B + A, into B and A,, we conclude that P(b,,B) = P(b,,B).

CoROLLARY 3.9. If a,<b; and a,<b,, Pla;,N) = Pa,,N), P(b;,N)
= P(b,, M), P((a;,by), W) = P((az, b,), W) and for every n and P& (P((ay, by), )"
P is realized both in (a,,b,) and (a,,b,), then P({a;,b,>, W = P({a,, by), W).

Proor. This is a simpler version of Lemma 3.5. However it can be inferred
from Lemma 3.5 as follows. Let € contain a single eclement, let A’ = € + .
Apply Lemma 3.5 to the decomposition of W’ into € and A, and conclude that
P({ay;b:>, W) = P(Kaz, b0, ).

Corollary 3.9 has the shortcoming that it does not give any information about
P({a;, b, AW when there is Pe(P((ay, b,), W)" which is not realized in (a,, b,).
Theorem 3.10 is a strengthening of Corollary 3.9 which overcomes this short-
coming.

THEOREM 3.10. There are numbers s,,u, such that if a,b,eA;, a;<b,,
i=1,2,and P, (a;, N)=P, (a;,,W,), P, (by, W)= P, (b, ;) and for every
Pe(P, ((a;,by), A", Pis realized in (ay,b,) iff P is realized in (ay,b,),
then P,{a;,b.>,A,) = P({as, by, Uy).

We shall not give here the proof of the theorem, since it has no application
in this paper. Theorem 3.10 can be further strengthened by replacing the ele-
ments ay, by, a,, b, by cuts. Here a cut is meant to be a subset Lof | ‘21[ such that
if a e Lthen |a] < L. The type of Lis the set of all sentences in a language con-
taining an additional unary predicate P which are true in (2, L), where L is the
interpretation of P in (%, L).

4. Kernels and saturated models

It will be useful to mention at this point some known facts about the order
topology. We shall say that an ordered set (X, <) is complete if whenever
LUR = X and L < R then either L has a maximum or R has a minimum.

THEOREM 4.1. Let (X, <) be an ordered set; then the following conditions
are equivalent:

(i) X (with its order topology) is compact.

(i) <X, <) is complete.
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(iii) Every subset of X has a supremum and an infimum.

Let (X, <) be an ordered set; for everyicwlet L, R;besuchthat L, UR; =X
and L; < R;. Then <{L;, R;>;., iscalled a separating sequence for X, if for every
x < y thereis i such that x € L; and y € R;. It is easy to see that X has a countable
basis of open sets iff X has a separating sequence.

The following theorem is well known.

THeoREM 4.2, If L(T) contains no unary predicates and the models of T
are densely ordered, if y > w and Wis a y-saturated model of T with cardinality
«, then a = yt.

Lemma 4.3. If Ay, ---, W, are y-saturated then so is X" ;.

Proor. Let A = X7, U. Let P be a type over a set of cardinality less than
y. Since P is finitely satisfiable in U, there is i, such that P is finitely satisfiable
in A;,. Let P* consist of the testing formulas of the formulas of P in the convex
submodel ;. Since P* is finitely satisfiable in U, and U;, is y-saturated, there
is a€A;, such that U, F P*[a]; but then AF P[a]. Hence U is y-saturated.

THEOREM 4.4. If vy is singular and W is y-saturated then W is y+-saturated.

Proor. It suffices to show that every type over a set of cardinality y is supported
by a type over a set of cardinality less than y. Let P be a type over a set
Bc 4, ' B “ = y. Without loss of generality, P is a complete type over B. If
P3v, = b for some b € B there is nothing to prove. Suppose this is not the case;
let L= {b|b<voeP} and R = {b|vo < beP}. Let L' = L be such that for
every be L thereis b’ = bin L' and | L'|| < y; let R’ < R be such that for every
beRthereisb’ < bin R’ and | R’ || <y. This choice is possible since |R|,
|L| < vandyis singular. For every ¢ P we define ¢* as follows: let by €L
and b, = b forevery be Lwhich isa parameter of ¢; let b,eR’ and b, < b
for every b € R which is parameter of ¢; let ¢*(b,, b,,v,) be the testing formula
of ¢ in the convex subset [by,b,], that is, Wk ¢*[b,, b,,b] iff be[by,b,] and
WE ¢[b]. Note that since P is complete b, and b, are the only parameters of
¢*. Let P* = {¢*|$pcP}. If Bk P*[a] for some B> A then B k Pla]. Thus
P* supports P, and the theorem is proved.

THEOREM 4.5. Let y 2 o and {I,<) be a linearly ordered set with the
following property: if I,,I, <1, I, £1,, and |]I1 5 || 12 || <y then there is
an i€l such that I, £i £ I,. For every icI let A; be SA and y-saturated,
and W; = A; for every i and j; then X, ;W; is y-saturated.

Proor. Let A = X, ,UA;. Let P be a complete type over B < A and
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|B|<v.Let L={b]b <v,eP}and R = {b|v, < beP}. We define subsets
of I,I; = {i|4inL#@}and I, = {i|4, "R # F}andletJ = {i|I, Si S L,}.
Clearly, J # . Let € = X ,.,%,. Since P is finitely satisfiable in C, we may
assume as in Theorem 4.4 that the set of parameters of P, B is a subset of C.
So since € <A and B < C it suffices to show that €k P[c] for some ceC.
Without loss of generality, J has a first and a last element, thus € = A, + €, + A,
where L, keJ. Since P is finitely satisfiable in €, either P is finitely satisfiable
in 4, 0orin C, or in 4,. Suppose P is finitely satisfiable in A4;; then for every ¢ € P
let ¢* be the testing formula of ¢ in the submodel 2, let P* = {¢*|¢eP}.
A, is y-saturated; P* has fewer than y parameters and is finitely satisfiable in %,
so there is an a € 4, such that U,k P*[a] so €k P[a]. The same argument is
applied if P is finitely satisfiable in %,

Suppose P is finitely satisfiable in €,. For every ¢ € P let ¢* be the testing
formula for ¢ in the submodel €, . Let P* = {¢*|$p e P}. Since BNC; = &,
P* has no parameters. Let {i,},<; be a one-to-one function from & onto J — {k, I}.
Let J, = {i,,ln <viand D, = X,.;, U;. Then it is easy to see by induction
that ®, is w-saturated for everyv. |J ,<:D, =€, and {D,},<; is an elementary
chain, so &, is w-saturated. P* is finitely satisfiable in €,, so there is a ce C,
such that €, F P*[c], and thus A F P[c]. The theorem is proved.

Let T be a complete theory. Let F = F,(T) be the Boolean algebra generated
by the set of all formulas ¢(v,) in F,(T) which define convex sets in every model
of T. Let #; be the set of ultrafilters of F. We call the elements of F; convex
types. Let % be a model of T. We define 'y = {|U|o| ®cF and |, # B}
We call the elements of /'y kernels in . It is easy to sez that every elemnant of
Ay is convex.

Ay is a partition of U which consists of convex subsets: it is linearly ordered
by the partial order defined on the subsets of an ordered set in the introduction.
Hence we shall always regard /'y as a linearly ordered set. When 'y is referred
to as a topological space, it will be always understood that /'y is taken with its
order topology. If A is an w-saturated model of T then the order on 'y induces
an order on &, thatis, ® < W iff | QI]q, < [ QI].V. Clearly this order is independent
of the choice of A. So, again we regard #; as an ordered set. When & ; is con-
sidered as a topological space, the topology is understood to be the order topology .

Let Abe amodel of T,and a€ A. Let T'= Ty ,y; then the elements of F.
will be called convex types over a. We denote "y ,) by o'y, and call the ele-
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ments of g kernels over a. When there is no risk of confusion, we abbreviate
and write 2#°° instead of #y. It is inessential to our discussion whether we
regard (%, a) as a model with an additional individual constant &, or whether
we regard it as a model with an additional unary predicate P, such that P¥ = {a}.
We may assume that always oy = Sy, where L(U’) consists of one binary
predicate and unary predicates only. Thus whatever is proved for kernels in
every typical language applies also to kernels over a.

Let A be a model, a € 4, and K eX'y (KeA'y). We say that K is definable
(over a) from below if {b|be A and,b> K or beK} is definable (over a). Defin-

ability from above is defined similarly. We list some elementary properties.

LemmA 4.6. Let W be w-saturated, and Ke A 'y. Then

(i) K has a successor in Ay iff K is definable from above;
K is a successor in X'y iff K is definable from below;
K is isolated in A’y iff K is definable in U.

(ii) Ay has a separating sequence.

(iii)y Ay is complete.

(iv) Similar results hold for A'y.

The proofs are straightforward.

LemMa 4.7. Let A =B; WA and B are w-saturated and & < F(Ty) is
Sfinitely satisfiable. Then Wy = By .

Proor. By Ehrenfeucht’s criterion the proof is trivial.

LEMMA 4.8. (i) Let U be an w-saturated model of T and ®eF ;. Then
either Wy, consists of a single element b and b is definable in A, or Wy is SA.
(ii) If ae A then a similar result holds for kernels over a.

ProoF. (i) By Lemma 4.7 we may assume that 9 is also w-homogeneous.
Let ¢(v,) be a formula; there is an a € [ ‘II]d, such that Ak ¢[a]. Then for every
cel‘lllq, there is a b such that ¢ < be | Ao and Ak ¢[b]. If not, then (since
A is w-saturated) there must be some Y(v,y) € ® such that for no be I A |.,,, c<h
and Ak ¢[b]. Let x(vo)= Ix(vy £ xAY(X) A ¢(x)); then |A|, is convex and
|QI|¢ 2 |91|d,um # (. But then ® is not a convex type, and this is a contra-
diction. Hence for every c e | A Iq, there is b such that ¢ £ be | QIIQ and Ak @[b].

Let P € S;(T) and suppose P is realized in | A Im' Letce | Pl ]q,; by the preceding
argument, {c¢ < vo}UP is finitely satisfiable and, since A is w-saturated,

{¢ < v} U P is satisfiable. Thus if P e S,(T) is realized in I‘JIIQ then for every
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ce|Ulo, Pisrealized in |U|o N[c|. Leta,be|W|p; leta’ €| Ao be such that
a’ 2 band P(a’,A) = P(a,N). Since A is w-homogeneous there is an auto-
morphism f of A such that f(a) = a’. Clearly f [ Uy is an automorphism of A,
Thus for every a,b e [ ‘l[lq, thereisa’ = b and an automorphism f of A, such
that f(a) = a'. This implies that there are no convex definable subsets of | U],
other than |?I|L,> and . So we conclude that either g is SA or IQII(,, consists
of a single element; in the latter case, since U is w-saturated, it is obvious that
this element must be definable.

To prove (ii) we have only to remark that if U is w-saturated, then so is (21, a).

LEMMA 4.9. Let W be a y-saturated model of T, and ® e Fy; then Wy is
y-saturated. The same is true when © is a convex type over some ac A.

Proor. If | A [q, contains a single point then there is nothing to prove. Other-
wise, let B = IQI|¢ and “ B ” <7, let P be a complete type over B in . Let
C> p,coeC,and €F P[co]. Let A’ be the model obtained by replacing
o by € in U.

Clearly A’ > and AL, = €. Since A is y-saturated and “ B “ <y there is
an a € A which realizes in [ the same complete type over B as ¢, does. Clearly
ae | ‘lllq,. By Lemma 4.8 U, is SA, thus € is SA. By Corollary 3.8, a realizes in
¢ the same complete type over B as ¢, does. Hence € F P[a] whence Uy F P[a],
and we conclude that 2 is y-saturated.

LemMmA 4.10. If Wy, is SA and every ¢ € @ defines over a a convex set and
a¢|‘l[|¢,,a, then I‘llld,,ae%g‘{.

Proor. If |‘21|¢,a¢9i’ o then there is y(a,v,) which defines over a a convex
set such that ]‘HLM 2 | %[|¢u{l},,, # . If y* is the testing formula of x in Wy ,,
then y* is without parameters, | o,z |,» is convex, and |U|o, # | W .|+ # .
This contradicts the fact that Wy, is SA. Thus | U], ,€ #'§ and the lemma is
proved.

THEOREM 4.11. Let T have an infinite model, and let y > w be regular;
then T has a y-saturated model of cardinality o iff « 2 yi.

ProoF. Let U be a y-saturated model. We define an equivalence relation on
A:a ~ biff [a,b] is finite. Let A* be the set of equivalence classes. If a*, b* € A*
we say that a* < b* if, for every acea* and beb*, a <b. Clearly < linearly
orders A*. Let A* = {A*, <); it is easy to see that U* is densely ordered and
y-saturated. By Theorem 4.2, | A* | = yZ, hence | 4] = 2.



Vol. 17, 1974 THEORIES OF LINEAR ORDER 413

Let a =y~ Since y is regular (y2)2= yL. So, by [5], T has a y-saturated
model of cardinality y2, say B. By Lemmas 4.8 and 4.9 there is € ¢ B such
that € is SA and y-saturated. By Theorem 4.5, € - (a+1, <) is again y-saturated.
Suppose B = B, + € +B,, and let B, = B; where i = 1,2 and B are y-sat-
urated models of cardinality y%. Let B'=8,+ € - {(a + 1, <) + B;; then ob-
viously B’ = B, [QS’\ =a, and by Lemma 4.3, B’ is y-saturated. If B = B;+C¢
orB = €+ B, we define B’ similarly. If B = ¢ then € (a+1, <) is the
desired y-saturated model. Q.E.D.

COROLLARY 4.12. If vy is singular and T has infinite models then T has a
y-saturated model of cardinality o iff o = 2°.

Proor. Combine Theorems 4.4 and 4.11.

Lemma 4.13.  If W is an w-saturated model of T, and for every ®e F;,
Wy is y-saturated, then W is y-saturated.

ProOF. Let B< 4, |B| <y, and P a complete type over B. Let @, =
sup{® | ® € # and there is a be|UA|, such thath < v, € P} where the supremum
is taken in F;. Let @, = inf{d)ld)eﬂ'r and there is a bel‘)IIo such that
vo £ beP}. Let C = U¢l<q,<q,2|91|¢. Then P is finitely satisfiable either in
C or in lﬂlm or |91|¢2. Suppose P is finitely satisfiable in IQIIM- For every
¢ P, let ¢* be the testing formula of ¢ in Ay, , and let P* = {¢* I ¢ € P}. Then
P* is finitely satisfiable in Uy, . Since Wy, is y-saturated, there is an ae | ‘21](,,1
such that Uy, F P*[a], hence A F P[a]. The same argument is applied when P is
finitely satisfiable in [ ‘Illq,z. Suppose P is not finitely satisfiable in l A Iq;l U | ‘III(,,z .
We show that there is ¢(vy) such that | A Iq, < C and P is finitely satisfiable in | A I,,,.
LetC = Uiewlﬁlld,i,where for every i | QII(,,i is convex. Suppose that, for no i,
P is finitely satisfiable in I%Ild,i and let P, = P be finite. Then for every i, P,
is satisfiable in | UA|.,,. Since U is w-saturated Py U {~ ¢;|icw} is satisfiable
in 9, that is, P, is satisfiable in 4 — C.. Thus P is finitely satisfiable in | % |o, U |Ulo,
which is a contradiction. So there is some i such that P is finitely satisfiable
in |QI|¢, For every ¢ € P, let ¢*(v,) be such that Wk ¢*[a] iff ae ] 9I|¢i and
A E ¢pla]. Let P* = {¢* |¢EP}. Since C contains no parameters of P,
P* is a pure type (that is, without parameters). Since U is w-saturated there is
an a € 4 such that Ak P*[a], but then Ak P[a]. Thus U is y-saturated.

THEOREM 4.14. Let {W'|v < a} be a set of y-saturated infinite models of
[‘II" ” < a. Then there is N such that ” QI" = o,
W is y-saturated, and for every v < a, A" < A.

T such that for every v,
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PrOOF. For every ® € £ we define A®. If | A°|,, consists of a single element
then A® = AY; if not, then A= X, ., A%. Let A= T4 .5, A% then it
is easy to see that || = «, that for every v, A> A”, for every ®e Fr,

o= A®, and that U, is y-saturated.

We shall show that U is w-saturated. Let P be a complete type over d; without
loss of generality, d = <{a,a,) and &, < vy < @, P. Suppose there is D€ F
such that g,a,¢ ] 2[[(,,. For every ¢ ¢ P let ¢* be the testing formula of ¢ in
Ay and P* = {¢*|p e P}. P* is finitely satisfiable in Ay and Wy is y-saturated,
thus Uy, B P*[a] for some ae,QI]q,, and hence AF P[a]. Suppose a; and a,
belong to distinct kernels. Let y be such that %A = A, + A, and a, e]%II,,,,
ay €| U|.y;then P is finitely satisfiable either in | |, or in | A ., . Without loss
of generality, P is finitely satisfiable in IQIL,, For every ¢(a,,a,,vo)eP let
o*(a;,vy) be such that Wk ¢*[a,,a] iff aeli’llw and UFE ¢[ay,a,a]. Let
pP* = {¢*[¢EP}; then P* is a type over a, in . Let [‘lI"Iaal. Since A’
is w-saturated and A’ <Y there is an a € | ‘ZI"[ such that %A’k P*[a], and thus
Ak P[a]. Hence U is w-saturated. By Lemma 4.13, 9 is y-saturated, hence U
is as desired. Q.E.D.

5. Theories T with finite S;(7)

The discussion in this section is confined to an arbitrary but fixed finite language
L. N and T thus will denote a model and a theory in this language.

DEerINITION. Let U be SA and ae 4. Let Cy be the union of all the convex
and bounded subsets of A which contain a and are definable over a. €y will
denote the submodel of 9 having C¥ as its universe. We omit the subscript U
in C§ and G when thereis no risk of confusion. We call both Cy and €y the
component of ain %. In the Lemma 5.1 it will be convenient to use the following
notation:

Cq = Cgn[a|, and Cji = Cn|a].
LemMa 5.1, Let U be SA; then for every a,be A either C*°NC* = & or
c* = C".

ProOF. (i). If be C®then C"2 C°N[b|. If not, let ¢(x,v5) be such that
|2, is convex bounded with minimum a, and such that there is a d e | %[,
such that d > C°. By Corollary 2.4 there is a testing formula ¢*(x,v,) such that

|QI|¢.,,, = lgl[lwﬂ[bl
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hence d €[ |4., = C* contrary to the choice of d. Thus C*2 C°N[b].

(i) If beC®then C’< C“m[b]. Suppose (i) is not true. Let ¢(x, v,)
be such that a,be|U|y, = C*and Yy, € A. Since C'> C°n[b] there is
Y¥(x,v0) such that be|A|,, < C* and | A, 2Cn [b].

We may assume that for every ce A, | U], . is convex, bounded, and has ¢
as its minimum. Let x(x,vo) = ¢(x, ) vV I(P(x, ¥) A Y(y,v5)) . ]‘JI]M is convex,
min(| Al,) =a, and |A|,, 2 C® Thus |A[,, = [a |, and therefore Ak
Vy(y > a - x(a,)). We define P = {~y(d,v,) |de| Uy} U {v, > a}. Since
|QI|,,,,,, is bounded from above for every ce A, P is finitely satisfiable in 2. So
there is B such that A +B > A and A + B F P[c] for some ce B. But then
A+BEa<caVy(da, y) > ~Y(y, ¢)), since ! )| |¢.,, is bounded UA + BE
~ ¢[a,c].Hence A + BEF a < c A ~y(a,c)and therefore Wk Ay(a < y A ~ x(a,y)).
We arrive at a contradiction. Thus (ii) is true.

(iii) If beC®then ae C®. We may assume that C, is bounded from above.
Suppose by way of contradiction beC” but a¢§b. Let ¢(x,v,) be such that
!‘ZI |¢,,, is bounded and convex with minimum a and | A L,,,,,a b. We may assume
that IQI[,,,,C is bounded convex with minimum ¢ for every ¢ € A. Then for every
de A there exists ¢ <d such that Ak ¢[c,b]. Otherwise, let y = x = v, A
Iy(y £ vo A P(3,x)). Then |‘21|x,,, is convex bounded with maximum b and
contains a; thus I‘IIIL,, 2 g” and this is a contradiction. Thus WEVy 3z(z < y A
¢(z,b)) .Since A is SA and C* isbounded there is b’ > C* such that
NEVyIz(z < yad(z, b’)). Hence there is a’ < a such that Ak ¢ [a',b'].
Thus C* 2 |¥U|y. 2 C* which contradicts (i), and (iii) is proved.

If we interchange C with C in (i), (ii), (iii), clearly we obtain true statements.
It is now easy to deduce that if C* C? # @ then C* = C*. Q.E.D.

LemMA 5.2. Let U be SA, {€};.; be distinct components in W and for
every iel, € <% Let W be the submodel of W having (A— U, ;C*)
U (U ;erC) as its universe; then for every iel, C; is a component in N’.

ProoF. A’ < U, thusifae 4’ then |A|,, is convex and bounded iff | A'|,,
is convex and bounded. It now follows easily that C; is a component in UA’. We
skip the easy proof of the following lemma.

LemMA 5.3. Let W and B be SA. Then

@ if f is an isomorphism from W onto B then for every acA,
f(Cy) = 2.

(i) if A<B and acAd then €y <Cg.
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(iii) if aed", beB", (W, a) = (B, ), and the elements of d are all in the
same component §, then the elements of b are all in the same component, say

D, and (C,d) = (D,b).

LemMA 5.4. Let W be SA, Ty = T, S|(T) be finite; then:

() if € is a coponent in U, then ” S{(Ty) || < “ Si(T) ”

(ii) exactly one of the following alternatives holds: (a) For every ac A,
€ < A. (b) For every ac A, C*is definable over a. There is no first or last
component. If C** < C* and P € S,(T) then there is a € A such that P(a, ) = P
and C*' < C"< C*".

Proor. By Lemma 5.3(iii), (i) is easy.

(ii). If C°= A for some a4 then (a) holds. It is easily seen that for any
B if P(b,B) is isolated in S;(T;) and C; is definable over b, then Cj; is definable
over every element of C;. Suppose C® # A and C” is not definable over a for
some a € A; then clearly C* is not definable over any of its members. We first
show that €% < . It suffices to show that for every be C*® and for every ¢, if
A F Ix ¢(b, x) then there is c € C* such that Ak P[b,c]. Suppose this is not true.
We may assume that Wk ¢[b,d),d > C* and for no ceC?, WUk ¢[b,c]; then
clearly C? is definable over b. Let « generate P(b, 2); then

x(b,v0) = vg £ bAVY((Y) AIz(§(y,2) Az £ b)) = (¥ < 1))

defines C® over b so C” is definable over b and this is a contradiction. We conclude
that €* < U. Since S,(T) is finite, P(C*, W) = S,(T), by Lemma 5.3(iii), for
every component of U, €, € = €¢; hence U is the sum of elementarily equivalent
SA models, hence U > € for every component € of W. We showed that if for
some a€ A, C® is not definable over a then (a) holds.

Suppose that for every ae A, C° # A and C® is definable over a. Suppose
C® < C? and there is P S,(T) which is realized by no element ¢ such that C®
<c<CP. Let yY(b,v,) define C® and ¢(a,v,) define C°. Let o generate P
and B generate P(b,N). Let y(a,v0) = a < voAdx(vy £ xABX)AVYY((a =
YE XA ~Yx,Y)A ~$(a,y)) > ~a(y))); then | A, ={c|ce [a,b'] for some b’
such that P(b’, %) = P(b,A) and there is no element between C* and C real-
izing P}. So ||, is convex and bounded and | A|,, P C* which is impossible.
It remains to show that there is no first or last component in 9. If C* is the last
component in U then it is definable in A, so C* = A, in contradiction to our
assumption. Thus ii(b) holds. Q.E.D.
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LemMA 5.5. If W is SA, U = G for some a’ €A, and S(Ty) is finite
then for every ac A, if P = P(a, W) then:

(i) there is b > a such that b realizes P, P([a,b],W) = S(Ty) and for
every c€(a,b) which realizes P either P([a,c], W) # S,(Ty) or P([c,b], W)
# S1(Ty).

(i) there is b < a with similar properties.

PROOF. (i). Suppose by way of contradiction there is no such b. Let by, > a
be such that P([a, by}, A) = S;(Ty) and P(by, ) = P. By our assumption there
is by which realizes P such that a < b; < by and

P([a, b1]5 QI) = P([bls bo]’ %[) = Sl(Tﬂl)-
We continue this construction as follows:
P([aa bi+ 1]’ 9I) = P([b1+ 1» bi], Q[) = Sl(T‘u)
for every iew. Let I‘II],,,, be convex and bounded |‘JI|M9 by. Let b realize P
and b> |A|,,. Hence b > by. By Corollary 3.9, P({a, by, A) = P(a,b), N).

But this is impossible since A F x[a,b,] but Ak ~ x[a,b]. Thus the lemma
is proved.

LemMMA 5.6. Let S,(Ty) be finite, by < b, < by be elements of A,
P(by, ) = P(b,,A) = P, and P({b,, b;], N) = S(Ty). Then either
P([by,b,], %) = Sy(Tay) or P([b2,b;3], %) = Sy(T).

ProoF. For i=1,2 let D;=U {[b,d]|b,;<d and P([b,d], W) # Sy(Ty)}.
Clearly since S;(Ty) is finite then P(Dy, ) = P(D,, A) # S,(Ty). If the lemma
is not true then [b;, b;,,] < D; fori = 1,2, thus P([b; ,b5],N) =P(D; U D,,N)
# S1(Ty) in contradiction to our assumption on [b,, b;]. Hence the lemma is
true.

Lemma 5.7. Let U be a model in any language. If P(a,N)=P(b, N) and
ae(| Uy )", then be(|U|,p" and (W, 4 d) = (U, 5, b).

ProoF. Trivial.

DrerFINTION 5.8. We define inductively the class of models ;. &, is the
class of all models in the language L containing a single element. Ae &, , iff
one of the following conditions holds:

@ WA +A, and A, AWye ;.

(i) W= X U, for every jeJ ;e for every jy,j,eJ, U;, =U,,
J,<>=1Z.
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(i) A== X;.;%;, for every jeJ, A;€ F;; there are jy,--,j, such that
forevery jeJ, U; = A,,. For some k, {J,<) = Q, and forevery k,1 £k<r,
{i|%W; = Ay} is dense in J, <).

(iv) UAe¥;.

Lety: Uiemy

THEOREM 5.9. Let U be a model in the language L; then S,(Ty) is finite if
and only if e Z.

PrOOF. We leave it to the reader to prove that, if e then S,(Ty) is finite.

We show that if || S,(Ty)|| < n then A e &,,_,. It is easy to see that this is
true for n = 1. Suppose | Sy(Ty)| = n+ 1. We first consider the case when
A is not SA: A = Wy + .y and || Sy(Ty) |, | Su(Tu~g)| < n. By the in-
duction hypothesis Uy, . p€ F2y—y 50 UE F5,.

Suppose that U fulfills Lemma 5.4(ii:b). We show that for every a € 4, € €5,
If || Sy(Tg0)
| $4(Tga)| = n + 1 for some ae A. Hence for every be 4,& =¢"; thus if €
is SA then € < A which is impossible. Thus €* is not SA; we showed in the
first part of the proof that if it is so then €€ &,,. Let J & A contain a single
representative from every component of . It is easy to see that the decompo-
sition W = X ,.,Cfulfills all the conditions set in Dzfinition 5.8 (iii). We con-
clude that e, ..

Suppose U fulfills Lemma 5.4(ii,a). Without loss of generality, we may
assume that 9 consists of a single component. Let Pe S((Ty), let {a,},.z be
a sequence of elements in U realizing P. Let z — a, be an order isomorphism,
and for every ze Z, P([a,,a,+,], W) = S;(Ty), and there is no ae(a,,a,+1)
which realizes P such that P([a,,a],%) = P([a,a,.+,], W) = S;(Ty). The exis-
tence of such a sequence was assured in Lemma 5.5. Since U consists of a single
component by Corollary 3.9, {a,}, 2 is unbounded from below and unbounded
from above. Let z€Z; we define 4, = {a | a = a,.Thereis b = a which realizes
P, and P([a,,b], U] # S,(Ty); or a< a, and there is b < a which realizes P
and P([b,a,],) # Sy(Ty)}.

There is Q, which is not realized in A4,, for otherwise there are by, b, which
realize P such that b, < a, £ b, and

P([bla az]’ QI) # SI(T‘H) # P([aza bz]s QI)
but P([b;,b,], M) = Sy(Ty). This contradicts Lemma 5.6. Since A, is definable

< n then this is true by the induction hypothesis. Suppose
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over a, and Q, is isolated, we may assume that Q, = Q,, for every z; and z,.
Let Q, = Q. Let ¢(vy,x) have the following meaning: there is some y which
realizes P, v, econv({x,y}) and P(conv({x,y}),N) # S;(Ty). Using the prop-
erties of {a,},., and Lemma 5.6 it can be shown that for every z and for every
acd, A, = |U|,, By Lemma 5.7 if by,b, e 4, and P(b,, %) = P(b,, ) then
P(b,,A) = P(by,A,), so since Q¢P(A, W), | Sy(Ty)| <] Su(Tw|. More-
over, for every zy,z; U, =N,. Let B, = {a| 4,<a<A4,4,}. Since
QeP([a,a,:1], W) — P4,V A1, N), B, # &. It is easy to see that there is
¥(vo, x) such that for every z and for every be B,, B, = | A|, ,. Since P ¢ P(B,, %)
again we obtain that || Sy(Ty,) | < | Sy(Ty) | and B,, = B,, for every z, and z,.
By our induction hypothesis U,,B,€ 5,1 hence A, +B,€ F,,. U=2,.,
(A, + B,) and this decomposition fulfills all the conditions of Definition 5.8 (ii),
hence Ae F,,;1- Q.E.D.

COROLLARY 5.10. For every n<w, {T||Sy(T)| < n} is finite.

Proor. We showed that
{T] | S«(T)| £ n} = {T| T has a model in &,,_,};

since our language Lis finite {T| T has a model in &} is finite. A straightforward
induction shows that {TI T has a model in %,} is finite; hence the corollary is
proved.

CoroLLARY 5.11. If I(T) is finite and Sy(T) is finite then T has a finite
axiomatization.

Proor. We follow the proof of Theorem 5.9. If |S,(T)|| =1 then, clearly,
T has a finite axiomatization. If | S,(Ty) | = n+ 1, A = A, + A, we construct
a finite axiomatization for % by means of the axiomatizations for U, and A.,,.
The same can be done also in the other cases considered in Theorem 5.9,

We shall say that T'is w-categorical if any two models of T of cardinality < w
are isomorphic. U is said to be w-categorical if Ty is w-categorical.

DerINITION. We define inductively the class of models 4;. €, = &,. e €.,
iff Ae¥; or A decomposes as in Definition 5.8 (i) or (iii). Let € = U ;...
Theorem 5.12 is due to Rosenstein [6].

THeoreM 5.12. W is w-categorial iff Ue¥.
We shall need the following lemma:

Lemma 513, If Ue%, and B € A then Be%,,.
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The proof is easy.
Most of the results of this section hold, possibly with trivial corrections, even
if L(T) is infinite. We formulate some of these results for further application.

LemMA 5.14. Let L be finite or infinite, then:

(@ If A and B are w-categorical models in the language L so is A +B.

G If A = X, %, J,<)=Q, there are A',---, A* such that the sets
J;={j|¥%; = W} are dense in J, Uk_1J; = J and each W' is w-categorical
then so is .

LemmAa 5.15. Let W be an w-categorical model in the language L (L may
be finite or infinite); then

@ If B c U then B is w-categorical.

(i) {Ts|B c A} is finite.

6. The number of countable models of a theory

In this section we shall find the number of nonisomorphic countable models
of a theory T. In the first part of the section we shall discuss this problem in the
case when the models of T are SA. In this case our result does not depend on
whether I(T) is finite or countable. However, if the models of T are not SA,
we shall obtain different results for L(T) finite and countable, It is Theorem 6.12
which is true when L(T) is finite but not otherwise.

LemMa 6.1. Let U, be SA, Uy =W, =Ws, and U=, + A, + Us.
Let de A, and let B = W, + €, + Aj; then B <A,

Proor. It suffices to show that for every ce Cy,, for every be IQII l U | A, |
and for every ¢ if there is a€ 4, such that Ak ¢[b,a,c], then there is a’€ B
such that A k ¢[b,a’,c]. Without loss of generality, we may assume that
beAd,, ceC},acd,—Cq,, b<a<c, and AF $[b,a,c]. Suppose by way
of contradiction there is no a’ € A, such that Ak ¢[b,a’,c]. Let ¢*(vy,v,) be
the testing formula of ¢(vo,vy,¢) in Uy ; then A F ~ Jug*(b,u). Since Ay <A,
A E ~ Jud*(b,u) A §(b,a,c). The formula

%0, €) = vo S ¢ Adx Tp(x £ 05 AY S VoA ~ Jud*(x,u) A d(x,Y,¢)
defines over ¢ a convex set and |U[,. 2 Cy, N [, c].

Since Cfj, = Cy, |U|,.. 2 C, hence | %], = |%,c].

Let d’ € A, ; since WE x[d’,c], thereare b’, @’ < d' such that Ak ~3ud*(b’,u)
A¢[b,a',c],and so U, F ¢*[b',a’]. Since Ay <A, AE $*[b',a"], but this is
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impossible. So there exists a’ € 4,, such that Wk ¢[b,a’,c], and the lemma is
proved.

Lemma 6.2, If ” S(T) “ = w and the models of T are SA, then T has
2° nonisomorphic countable models.

ProoF. Let P be a nonisolated type of S;(T). Let U, be a countable model
of T in which P is realized, and let U, be a countable model of T omitting P.
Let B = A, + €y, + A, where P(a, A,) = P. Since B <A, + A, + Ay > U,
P(a,B) = P and €y = @4, . If D, and D, are nonisomorphic ordered sets then
B-D, and B - D, are nonisomorphic, for the set of components of B D,
in which P is realized has the order type of D; and the same set of components
in B - D, has the order type of D,. Since there are 2° countable order types
we obtain 2° nonisomorphic models of the form B - D where D is a countable
ordered set, and the lemma is proved.

We obtain a similar result when S,(T) is finite.

Lemma 6.3.  If S|(T) is finite, then either T is w-categorical or T has 2°
nonisomorphic countable models.

Proor. Without loss of generality, we can assume that L(T) is finite. We
prove the theorem by induction on |Sy(T)||. If ||Sy(T)| = 1 then it is easy
to check that T has a model which contains a single point, or T has a model of
order type n, or T has a model of order type Z, and each unary predicate in a
model of T is either empty or the whole universe. In any of these cases either T
is w-categorical or T has 2“ nonisomorphic countable models.

Suppose |] §(T) n = n + 1. We distinguish between the case when the models
of T are not SA, and cases (ii, a) and (ii, b) of Lemma 5.4. Inthe first case let
Abe a countable model of T; then A = Wy+ A, where | S,(Ty,) | <nand
| Sy(Ty~g)| < n. If Ay and A4 are both w-categorical then so is A. If, say, U,
is not w-categorical then by the induction hypothesis there is a set of countable
models { B,| v < 2°} such that for every v, B, = U, and if v; # v, then B, £8B,,.
Let A, = B, + A.,. Obviously A, = A, and by Lemma 2.5 (i) if v; # v,, U,,
2 U,,. In case (a) of Lemma 5.4 (ii) T has a countable model U consisting of
a single component. If D, and D, are nonisomorphic ordered sets, then clearly,
A-D, 2 AD, and A-D; = . So obviously T has 2° nonisomorphic count-
able models. In Case (b) of Lemma 5.4 (ii) choose a model W of T such
that: A =2, oW, A is countable, each A, is a component of A, and
there are U',--, U* such that A’ W fori # j,and the sets Q; = {r| U= A}
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are dense in @ and Y~ Q; = Q. We further assume that each %, is definable
over any of its elements. If the ;’s are all w-categorical then so is U. If A is not
w-categorical for some ip, let T' = Tyio, then either |Sy(T")| < n or
|| S(T") " =n+1 and A is not SA. Thus by the induction hypothesis or by
the same argument as in the first case, T’ has 2¢ nonisomorphic countable models.
Let {8, [v<2°} be a set of such models, and define A, = X, o, where
€A = A, if r¢Q,, and A =B, if reQ; . Then obviously U, is a model of T.
If v, # v, then A, 2z UA,,, for the components of A, which are elementarily
equivalent to 2’ are not isomorphic to the components of ?,, which are ele-
mentarily equivalent to 2. Hence T has 2° nonisomorphic countable models,
and the lemma is proved.

LemMA 6.4.  If for some model W of T and some ® € Fr, Wy is not w-cate-
gorical, then T has 2° nonisomorphic countable models.

ProoF. Let B > U and B be w-saturated. Let D be the submodel of B with
universe conv(l QII‘,,SB). By Theorem 2.10(i), D > Uy, hence D is not w-cate-
gorical, but D € By, thus by Lemma 5.15(i), B is not w-categorical. By Lemma
4.8, By is SA. Hence by Lemmas 6.2 and 6.3 there are 2° nonisomorphic count-
able models elementarily equivalent to B, Let{B, |v <2} be a set of such models.

Let € <B be countable and
C = {c|ceC and ¢<|Bo|}, C={c|ceC and c>|Bol};

then {€ +B, + €|v <2} is a set of 2° nonisomorphic countable models of .

LemMA 6.5. Let ®eFpand T = {Ty,|U is a model of T}; then if every
T' €7 is w-categorical then 7 is finite.

ProoF. For every T' €7 let W(T’) be a model of T such that (T")o F T".
Let B be w-saturated and B > W(T"’) for every T' €7 ; then, as in Lemma
6.4, for every T'eJ, By > Dy > WT')p where Dr. = conv(| QI(T’)‘,,,‘B).
Since B, is w-categorical, by Lemma 5.15(ii), 7 is finite.

LEMMA 6.6. Let XA < Ay be a set of limit kernels, such that for no
Ke ', K is an accumulation point of A relative to A'y. Let B be the sub-
model of W having A— U {K|Ke~.%’} as its universe; then B < A.

PROOF. Suppose it is not true that B < %; then there is b B* and a formula
#(b,vo) and an element acA~B such that Ak ¢[b,a] but for no beB,
Ak ¢[b,b]. Let ac K e X '; by our assumption on ¢ there is Y(vo) such that
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[Ul, 2 K, Ay, c W, |Al, N K' = for every K'e & — {K}, and |¥],
does not intersect 5. By Corollary 2.4 there is ¢*(v,) such that for every a’ € 4,
Ak ¢*[a’]iff a’ €| A|, and Ak ¢[b,a']. Let
(o) = 3x;Ixy(x; S vo S X3 A P*(x1) A *(x2));

then a defines a convex nonempty subset of A. ¢* is satisfied by no element
outside K, for lﬁlw — K < B, and ¢ is satisfied by an element of B. Thus
IQ[I,, < K. But Ke Ay so I‘!II, = K, contradicting the fact that K is a limit
kernel. Thus B < A, and the lemma is proved.

THEOREM 6.7. Either T has only a finite number of nonisomorphic countable
models or T has 2° nonisomorhpic countable models.

ProOOF. By Lemmas 6.2 and 6.3 the theorem is true when the models of T
are SA. If for some n, ” SAT) ” = 2%, trivially T has 2° nonisomorphic countable
models. Suppose the models of T are not SA and | S(T)| =< o for every n.
Let % be a countable w-saturated model of T. If there are infinitely many limit
kernels in 'y, let 24 be an infinite subset of £y consisting of limit kernels,
such that for no K € £, K is an accumulation point of #". For every X' < X%~
let Ay be the submodel of A having 4 — U {K'|K'e A"} as its universe.
By Lemma 6.6 U is a model of Tforevery A < % . Obviously if A # A,
then A, 2 Wy,. Thus we obtain 2° nonisomorphic models of T as demanded.

Suppose now that the models of T have only finitely many limit kernels. If
there is a model of T, U, and ®eF; such that W, is not w-categorical, then
by Lemma 6.4, T has 2° nonisomorphic countable models.

It remains to consider the case where there are only finitely many limit kernels
in &y, and for every ®& %, and a model A of T, W, is w-categorical. For
every ®e Fp let T ¢ = {Ty, | U is a model of T}; then by Lemma 6.5 T, is
finite for every ® ¢ #. Further, if ® is isolated in #r then | 74| = 1. Since
there are only finitely many limit types in % there are only finitely many 7 4’s
for which “ T e “ > 1. It is now obvious that such T has only finitely many
nonisomorphic countable models, and the theorem is proved.

ReMARK. Indeed for every positive n # 2 there is T such that T has exactly
n nonisomorphic countable models.

The result of Theorem 6.7 can be sharpened when L(T) is finite, namely, the
number of nonisomorphic countable models is then either one or2®. The dif-

ference arises because if L(T) is finite and ® is a limit type in J ; then there is
always a model of T, % such that %, is not w-categorical. We already saw in
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Lemma 6.4 that if this is the case then T has 2° nonisomorphic countable models.
LEMMA 6.8. Let U be a model of T, L(T) is finite,
{¢ili€0)} eFr, %i c Q’I/\j§i¢j’ 23i GgiEBl"*'l’

B, is w-categorical, and B = U ., (B, 9); then there is W > W such that
B € Wojicar-

ProoF. Let {bzlzeZ} < B be such that b, < b,, for z; £z, and
U,>o[b-,,b,] = B. For every z >0 there is i such that B; 2 [b_,, b,]. Let
D, =@, <{b_,,b_,11 > b)) where D) is the submodel of B with universe
[6-,,b,]. By Lemma 5.13 D, is w-categorical and by Corollary 5.11 it has a
a finite axiomatization, say, y.. Let ¥, be the relativization of ¢, to the sub-
model defined by the formula 5_, < v, < b,, that is, ¥, says that [b_,,b,]
satisfies ¥.. We may assume that ANB = . Let £ = D(AW) v {l,bzlz > 0}
V] {¢i(l32)|iew} where D() is the complete diagram of . It is easily seen
that2, is consistent. Let %’ be a countable model of £ and let a, be the inter-
pretation of b, in A’. Let B’ be the submodel of A’ having conv({a,| z € Z})
as its universe, and ¢, the submodel of A’ with universe [a_,a.]. Since €, = D,
B’ = B. Obviously A’ [ L(T) > A and B’ € Wiy jicw)- Q.E.D.

LEMMA 6.9. Let (A,<) be an infinite, partially ordered set. For every
acd {x|x<a} is finite. If ac A we define h(a) = max{n| there are a;,
i=0,---,n, such that ay < a, --- < a, =a} . For every n {a]h(a) < n} is finite.
Then there is B = A of order type ®.

ProoF. We define a new relation on A. a<,;b if there is a chain
4y < ay <+ <ayp = b such that a = g; for some i, 0 < i < h(b). It is easily
seen that <, partially orders 4, if a<,b then a <b, and if we define
hy(a) = max {n| there are a;, i = 0,-,n, such that ag<;a, <; - <,a,=a},
then for every ac A, h(a) = h,(a). We define inductively sequences b; and B,
such that B; is infinite and for every beB;, b; <,b. For every a€ A there is
b<, a such that h,(b) = 0. Since {blhl(b) =0} is finite there s
by such that h,(by) = 0 and {blbo <, b} is infinite. Let B, = {blbo <, b}.
Suppose b; and B; are already defined. If b is a successor of b; relative to <,
then h(b) = h(b)) + 1. Thus {b | b is a successor of b; relative to <} is finite.
There is b’ which is a successor of brelative to <, such that {b | beB;and b’ <, b}
is infinite. Define b;,, = b’ and By = {b|beB; and b;4y <,b}. The set
B = {b;|icw} is as desired.
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LEMMA 6.10. Let L be a finite language, .# be an infinite set of w-cate-
gorical nonisomorphic countable models in the language L such that if We A
andB € U, then there is B' € M suchthat B' = B; then there are sequences
{Wtico and {g}ico such that for every icw, We.# and W, ¢, Wiy

Proor. We define a partial order < on .#: 8B < U iff for some n B eE,,
B¢y, Ve, — €, and B, A for some g. Obviously <is a partial
order; if e M N %, then {B|B <A < # N%,_, and is therefore finite.
It is easily seen that for every e A, h(A) = n iff e F,; hence {A |A(A) =n}
is finite. By Lemma 6.9 .# has a subset of order type ®, and this proves the
lemma.

LemMA 6.11. If Lis a finite language and for every ic w U, is an w-catego-
rical countable model in the language L, W; 2 U, for every i # jand A, € W4
for every icw, then U ;.,U; is not w-categorical.

Proor. Suppose U; ., U;€%,, then by Lemma 5.13 each A;€%,,, and this
is impossible, for there are only finitely many complete theories which have a
model in %,,.

THEOREM 6.12. If L(T) is finite then either T is w-categorical or T has
2% nonisomorphic coutable models.

Proor. By Lemmas 6.2 and 6.3 the theorem is true for theories whose models
are SA. By the proof of Theorem 6.7, if there are infinitely many limit types in
& then T has 2® nonisomorphic countable models. Suppose there are only
finitely many limit types in & . Let % be a countable model of T. If U, is not
w-categorical for some isolated ® in &, then, since Ay is SA, T has 2%
nonisomorphic countable models.

Suppose that for every isolated ® in F, W, is w-categorical. If Ay
is finite then T is w-categorical; otherwise, we may assume that £y has a
convex subset of order type w+ 1. Let this subset be {R};.,+; and
i > &, be an order isomorphism. Suppose first that there is an infinite
subset of w, M, such that if i,jeM and i # j then &2 &;. By Lemma 6.10,
there are sequences {V;};co» {€}ico such that v;>v; for i>j and v;e M for
every i, €, € &,, and for every i there is g; such that €; ¢, €, ;. Let K = Uy
where ® € #r; then by Lemma 6.8, U;.o(C;9g:) € By for some B = A. By
Lemma 6.11, U ,;.o(B;g) is not w-categorical, so by Lemma 5.13, B, is not
w-categorical. Hence, by Lemma 6.4, T has 2 nonisomorphic countable models.
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Suppose that there are models €, -+, €, such that for every iew, K =C;
for some j. We define by induction a sequence {k;};.,, such that 1 < k; < n
and for every i {VIRV_,,J- ~ 0 £ j £ i} = M,is infinite. It is easy to define k, .
Suppose kg, -+, k; are already defined. By the induction hypothesis M; is infinite
so there is r, such that {v|veM; and K,,;4; = G} is infinite. Let k;,, = r,
then k;,, has the demanded properties. Let D, = Xi_,G, ,; then D; is w-cate-
gorical since each €, is w-categorical. If i > jthen ®; > D,. For every i > j there
are D; and D] such that A>D;>D), D;5D;, D;ixD;, and D; = Dj;
D} is definable in 9, hence D} is definable in D, so||Sy(Ty,) || > ||S1(Ty,) | whence
D;2 D;. By Lemma 6.11, U,.,D; is not w-catgeorical and by Lemma 6.8,
Uico D € B, for some B = A. So by Lemma 6.4 we conclude that there are
2° nonisomorphic countable models elementarily equivalent to A. Q.E.D.

The following theorem can be easily proved by the methods of this section.

TueoreM 6.13.  If T has 2° nonisomorphic countable models, then every
countable model of T has 2° nonisomorphic countable elementary extensions.

REMARK. We did not succeed in answering the following question, which
is a special case of a more general open problem.

Let ¢ be a sentence of L, » such that < (and equality) are the only nonlogical
symbols which occur in ¢. Suppose all the models of ¢ are linearly ordered by
< . How many nonisomorphic countable models does ¢ have? We solved this
question in the following special case:

THEOREM. Let T be a (first order) theory of linear order and S a countable
set of types (not necessarily complete) of a single element. Then the number of
nonisomorphic countable models of T which omit the types of Siseither 2° or
s o.

7. The relation between S,(T) and S,(T)

In this section we investigate the relation between S(T) and S,(T). It turns
out that if S,(T) is small then so is S,(T). Corollary 7.22 and Theorem 7.27
express this fact. We shall measure the size of S,(T) not only by its cardinality
but also by its Cantor Bendixon rank. We thus need some topological prelimi-
naries.

DerFINITIONS.  Let X be a topological space; then D'(X) denotes the set of
accumulation points in X, D°(X) = X, D**'(X) = D'(D'(X)), and if 6 is a
limit ordinal then D’(X) = [1,<:D"(X).



Vol. 17, 1974 THEORIES OF LINEAR ORDER 427

We define the rank of x in X to be oo if xe D'(X) for every v and to be
U{v |x € D’(X)} otherwise. We denote the rank of x in X by R(x,X). Clearly,
if R(x,X) = v < oo then xeD'(X).

We define R(X), the rank of X, to be oo if there is some x € X for which
R(x,X) = o and to be U {R(x,X)|xe X} otherwise.

The proof of the following theorem can be found in [7, p. 170].

THeorReM 7.1. (i) If X is a countable Hausdorff compact space then there is
E<w, such that D*(X) = (.

(i) If X is a separable compact Hausdorff space then either || X ” L wor
| x| =2

The next lemma is well known.

LeMMA 7.2. A continuous one-to-one function from a compact space to
a Hausdorff space is @ homeomorphism into the second space.

From now on we confine ourselves to countable Hausdorff compact spaces;
X and Y will denote only such spaces. We list some elementary properties.

LemMmAa 7.3. (i) For every v,D'(X) is closed in X .

(i) R(x,X) = v iff for every neighbourhood V of x and for every & <v
there is x' # x in V such that R(x',X) = &.

(iii) R(x,X) £ viff x hasa neighbourhood V such that R(x',X)<v for
every x' # x in V.

(iv) If Y< X then D(Y) < D'(X).

LeMma 7.4. D'*4(X) = D(D*(X)).”

ProoF. The lemma is easily proved by induction on ¢.

Lemma 7.5. If X; are closed subsets of X,i=1,---,n, and UL, X;=X
then:

(i) For every v, D'(X) = |J -1 D'(X)).

(i) If xeX then there is i such that R(x,X) = R(x,X,).

(iiiy R(X) = max{R(X)|i=1,-,n}.

ProoOF. (ii) and (iii) are trivial consequences of (i). So it remains to prove (i).
We prove (i) by induction on v. For v = 0 there is nothing to prove. Let d be a
limit ordinal and suppose the induction hypothesis is true for every v < d. Let

x € DXX); then xe D*(X) for every v < &. By the induction hypothesis there is
i, such that x e D'(X; }, hence there is some i such that for every v < §, xe D' (X;)
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hence xeD’(X)). Let xe D**'(X) and suppose the induction hypothesis is true
for v. Let V'be a neighbourhood of x; then there exists x’ # x in V such that
x" € D'(X), thus x’ € D'(X;) for some i. For every neighbourhood V of x there
is some iand some x’ # x in Vsuch thatx’ € D'(X;). Thus there is an i such that
for every neighbourhood Vof x thereis x # x’in V such that x'e D *(X,). Since
X, is closed, x € X; and thus xeD"*Y(X).

LeMMA 7.6. Let A>B, n=1. C = {P(5,B)|beB"}. We define
f:C - S(Tw): f(P(5,B)) = POb,A;
then f is continuous.

ProoF. If ¢ is a formula with its free variables among vy,-*,v,.y, denote
Ve = {Q [ Q€ S5,(Ty) and Q> ¢}. Then the set of all such ¥, ’s is a basis for S(T) .
Thus it suffices to show that f~'(V,) is open in C. Let ¢* be the testing formula
for ¢; then f~1(V,) = Uy C where Uy, = {Q|Yy€QeS,(Ty)}. So f~1(V,)i
open, and f is continuous.

LemMA 7.7. Let U be w-saturated, ac A, and B = IQIIM. Then:

(i) PB,N) is closed in S(Ty).

(i) {P(a,b), N |beB} is closed in Sy(Ty).

(iii) If 8 is a limit ordinal and for every v < &, D'(Si(Ty)) N P(B,N) # I,
then D’(Sy(Ty) N P(B, W) # &.

ProoF. The proof of (i) and (ii) is trivial.

Since D'(S,(Ty)) is closed, and by (i), P(B, ) is closed, and S,(Ty) is compact,
Ny<s D' (S1(Tw) N P(B, W) = D’(Sy(Tw) N P(B,N) # &, and (iii) is proved.

LEMMA 7.8. Let U be w-saturated, ac A, and Ke Ay; let | be the
submodel of W with universe K. Then:

(i) The function g(P(b,R)) = P(b,N), beK, from S|(Ty) to Si(Ty) is a
homeomorphism.

(ii) Ifby,byeKandP(b;,N) = P(b,, )then P({a,b), W) = P({a, by, NA).

(iiiy  The function f from P(K,N) to S,(Ty), defined as

b, W) = P(Ka,b>,N), beB,
is a homeomorphism into S,(Ty).

Proor. (i) By Lemma 7.6, g is continuous; by Corollary 3.8, g is one-to-one,
and since its domain is compact g is a homeomorphism.
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(i) If K consists of a single point there is nothing to prove; otherwise, &
is SA, hence by Corollary 3.8, P(b,,R) = P(b,,R). By Theorem 2.1(ii),
P({a,by>, ) = P(Ka,b;), W).

(iii) By Lemma 7.7(ii) the domain of f ~! is closed, clearly f =* is continuous,
and by (ii) f~! is one-to-one, hence by Lemma 7.2, f~! is a homeomorphism.

We omit the trivial proofs of the following lemmas.

Lemva 7.9. Let C={Q|QeS(T) and Q3 AIZ5(; < v4y)};  let
f:C - (Sy(T)*~! be defined as follows: f(Q) = (P,-",P,_,> where P;
= {nplnpeQ and v,_, and v; are the only free variables of Y}, then f is a
homeomorphism into (S,(T))"~*.

LemMa 7.10.  If U is w-saturated, P € S,(Ty), and ac A, then {K|Ke A

and P(K,W)sP} is closed in Ay.

LemMa 7.11. Let W be w-saturated, ac A, KieXy, icw, Kedy,
lim; K; = K where the limit is taken in Ay, Q,€ P(K;,N), i € w, and lim; Q; = Q;
then Qe P(K, ).

LemmA 7.12. Let U be w-saturated, ac A, Ke Xy, and a < b < K; then:

() Kexy.

() IfBcWand B2 {a} UK then Ke X.

ProoF. (i) Let & be the submodel of % with universe K. Let K = |%|q,,
where ® e #§. By Corollary 2.4, K = ||, , where each ¢ € ®, defines over b

a convex set. By Lemma 4.9, either K contains a single element or R is SA. Hence,
by Lemma 4.10, Ke 2§.

(ii) By Corollary 2.3, K = |Q3|¢2,, where each ¢e®, defines over a a
convex set. Again, by Lemmas 4.9 and 4.10, Ke Ay

LeMMA 7.13.  Let f be an automorphism of N, ac A, and f(a) > a; then
there is an automorphism of W, g such that g(a) = f(a), and for every xe A,
g(x) = x.

PrROOF. Define C = {xl for every yeconv({a,x}) f(y) 2 y}; then clearly
C is convex. It is easily seen that f(C) = C. Let

g(x) = {f(x) xeC,
x x¢C;

then clearly, g is the desired automorphism.
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LemMA 7.14. Let A be w-saturated and w-homogeneous,ac 4. K, K, € A,
a £ K,<K,, and PeP(K,,M) N P(K,,W; then

(i) PK, W) < PK,,N).

(iiy If there are K;, K,€ X ° such that Pe P(K;, W) N P(K,,N) and
Ky <K3;<K;<K, and {K|Ke A “and K, £ K £ K; and P(K,%)> P} is
infinite, then P(K,, ) < P(K,, 7).

ProorF. (i) Since P(K,, W) N P(K,,N) # & and A is w-homogeneous there
is an automorphism f of W which carries some element of K, to an element of
K,. By Lemma 7.13 it can be assumed that f(a) = a. Obviously f(K,)e #7/@;
if f(a) < K, then by Lemma 7.12(i) also K, € #/@_ Since K, Nf(K,) # &,
necessarily K, = f(K,). If f(a)e K, then for no beK,, f(b) < K,. Suppose
there is some b € K, such that f(b) > K, . Let D be a convex set definable over a
which contains K, and does not contain f(b).

Let K7 be the submodel of U with universe f(K;); then D N f(K,) is definable
and convex in K7, and & # DN f(K,) # f(K,). This contradicts the fact that
K] is SA; thus, it is impossible that f(b) > K, for some beK,. In any case
f(K,) € K, and so P(K{, %) = P(K,, ).

(i) Let & ={KeX°and K; £ K £ K, and P(K, ) 3P}. Suppose (ii)
does not hold; then by (i) if Ke X then P(K, ) = P(K,,U). Let Ke o and
K # K,; wedefine A(K) = {a|a <Kand K’ <a for every K’e X such that
K' < K}.

Since ¢ is closed in X" and A™° is complete,

conv(K; UK,) = (U U U {4AR)|K, # Ke X},

If P(AK), WNPK,, N # & then there is some K' < A(K) such that
P(K',M) = P(K,,N), thus K'e "; this contradicts the definition of A(K).
Hence P(AKK),WNPK,,N) = &. Let Ke A& and K # K;; we show that
P(A(K), W) = P(A(K,),W). Let f be an antomorphism of U such that f(K) N K,
# . fAK)NK' = J for every K'e A, hence f(A(K)) < A(K;). Simi-
larly f~YA(K,) < A(K). Thus f(A(K)) = A(K,;) whence P(A(K),NA) =
P(A(K,), ).

Let bye K3, byeK,, and P(b;, W) = P(b,, N); let B be the submodel of A
with universe {CIK1 <ceAd}. Then by Corollary 3.7 and Theorem 2.1(ii)
P(a,b;>, MW = P({a,b,y,W. This contradicts the fact that by and b, belong
to distinct kernels over a. Hence P(K,;, W) gP(Kz, A). Q.E.D.
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Lemma 7.15. If U is w-homogeneous, ac A, K,K,e £°, a £ K; <K,
and P(K{,N) < P(K,,N), then there exists an automorphism f of W such that
f(conv({a} U K)y)) < K,.

PrOOF. Let f be an automorphism of 9 such that f(K,) N\ K, # & . Then,
since P(K,, ) < P(K,, W), Ky S K,. If f(a)¢ K, then by Lemma 7.12(i),
K,e A7'® | obviously, f(K,) X '@; but since K, and f(K,) intersect and are
not equal this situation is impossible. So f(a) € K, and the lemma is proved.

We omit the proof of the following lemma.

LemMma 7.16. If U is w-saturated and w-homogeneous, ac A, K,,K, e A,
a £ K;<K,, P(K,, MW < P(K,,N), and R(K,, X*) # R(K,, ™), then there
is an automorphism f of W such that f(conv({a} U K,)) < K,.

LemMA 7.17.  Let U be w-saturated and w-homogeneous, S,(Ty) be atomic,
acA, P(a,N) be isolated in Si(Ty), Cc U, K, eX*? i=0,-,4, C<K,
<K;<K;<Kz<K;,min C=a. P(Ky < P(K;, M < P(K,, W) and
P(K;, W) < P(K4, N); then there is Q isolated in S (Ty) such that Q € P(K,, N)
and Q¢ P(C, ).

ProoF. We first show that there is a formula ¢(vy) and ce A such that
C<c* K, and Ak ¢[c] and for no xe C, Ak ¢[x]. If not, then every n-type
of a single element which is realized in conv({a} U K,) is realized in C. By
Lemma 7.15 every n-type which is realized in C is realized in K;. Hence every
n-type which is realized in conv({a} U K,) is realized in K, . Let beK;,i = 1,2,
and P(b,, W) = P(b,, N); then since K, is SA and by Corollary 3.6 and Theorem
2.1(1), P({a,b;>, W) = P({a,b,),W). This is obviously a contradiction, hence
there must be ceconv({a} U K;) and ¢(v,) as required. Let ¢(v,) generate
P(a, W and a £ | A, < Ks, ce| Ay, € A We define x(vg) = $(vo) A Tvy(a(vy)
AU(vg,v1)). There is some Q isolated in S{(Ty) such that Q 5 x. Since o generates
a type in $,(Ty), Q must be realized in | A lw and, by Lemma 7.15, Q is realized
in K,. Since @3¢, Q ¢ P(C, ) thus Q is as required and the lemma is proved.

Lemma 7.18. () If (A", <) has a separating sequence and A" | < A then
A"y has a separating sequence.

@) If (A, <) is an ordered set of cardinality 2° and A4 has a separating
sequence, then there is A o = A with the following properties: Ay is of order
type 1, and for every Ky € Xy there are X", X" < X both of order type 1
such that
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{K|Ko>Ke Ao} < A’ < Ko<H"<{K|Ko<KeHo}.

Proor. (i) is trivial.

To prove (ii) we first show that if {4, <) has a separating sequence and
[A4] =2 then there is aeA such that |[%,a)| = l(a,%|| = 22 Let
{{L;, R}, be a separating sequence for UA. Let L= {a|ac Aand | | %, a) | <2°}
and R = {a|aeAand |(a,U|| <2°}. Let J = {L;|L;Z L}.1f acL and there
is some b > a in L, then aeL; for some L; in J. So [[L — U J|| < 1. Since
cf2”)>w, |J|| S w, and each clement of J is of cardinality less than
22 |UJ| <2%, thus |L| <2°. Similarly |R| <2°, and hence 4 — LUR
# . It follows easily from what we proved that there is &' < 2 of order
type n; and it is easy to select ¢’y < X"’ with the desired properties.

Lemma 7.19. If (X, <) is complete and Y is a closed subset of X then
the order topology on Y coincides with the relative topology induced on Y by X .

ProoF. Notice that the identity function is continuous from Y with the rel-
ative topology, to Y with the order topology. Since both topologies are Haus-
dorff and compact, the identity mapping must be a homeomorphism, hence the
topologies must coincide.

DErFINITION. Let {4, <) be an ordered set. B < A is called n-disjointed in

A if for every by € B there are Cy,C, < A such that
{b|bo>beB} < C; <by<Cy<{b] by<beB}

and | Gy | = | ] = n.

LemMa 7.20. Let (X, <) be countable and complete, ac X, 1 < R(a, X);
then there is B = X with the following properties.

() a¢B.

(i) By {a} is complete.

(iii) B is n-disjointed.

(iv) aecl(B,X}.

(v) Let B, be the topological space with B\U {a} as the underlying set and
with the order topology; then R(a,B;) = R(a, X).

ProOF. We prove the lemma by induction on R(a, X).For R(a,X) = 1 the
proof is trivial. Suppose R(a,X) =v>1. Let {;};co be a strictly monotone
sequence such that: lim; y; = a,

if i>j then R(y;,X) = R(y;,X),
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and v = min{¢ | & > R(y;, X) for every ico}.

Without loss of generality, y; < a for every i. By selecting a subsequence we can
assume that either for every i, R(yi,l y:]) = R(y;,X) or for every i,
R(y:, Ly I) = R(y,, X). We prove the lemma in the first case. Since R(y,-,| yh<v,
by the induction hypothesis, there is 4; < Iyi] with properties (i()~«(v). If i>0
let z; be with the following properties

(i) z;€A4;.

(i) There is X' < X such that ||X'l| =nand y_; <X <z.

(iii) z; has a successor in A4;.

(iv) There is no z € 4; such that z;< z and R(z, 4, U {y;}) > R(y;, 4; U {y:}),
where the order topology is taken on 4; U {y;}.

Let B = U o(4; N [z)); it is easy to show that B has the desired properties.
In the case where for every i, R(y,, [y,.l) = R(y; X), the construction of B is

similar.

THEOREM 7.21.  If || Sy(T)| < w then || S)(T)

I S w.

PROOF. Suppose the theorem is not true and T’ is such that | S{(T")| £
and || S,(T") | > o. We shall prove the following statements.

(i) LetB be an w-saturated model of T’; then there is be Band X4’ < A
such that | #'| =2% and () {P(K,B)|Ke X'} # . Using (i), we ob-
tain (ii).

(i) There is T for which | S(T)|| £ @ and || Sy(T)| =2, and there is
an w-saturated model of T, A, ae A, and o = A ®such that P(a, N) is isolated
in S(T), | || =2°, and N {PK,W|KeX} # &.

(iii). Let T, A, a, o be asin (ii), and let £, be a subset of ¢~ with properties
as in Lemma 7.18 (ii). We shall prove that for every K € o, there is Q isolated
in S;(T) such that @ , € P(K,U) and

Qg ¢ P(conv({a} U U {K'|K’ <K and K'e &,}),%).
(iv) Using (iii) we shall construct 2° types of S,(T).
Since (iv) contradicts (ii) the existence of T’ as above is impossible, and the
theorem thus will be proved.
(i) By Theorem 7.1(i), | So(T")|| = 2°, hence there must be some P & §,(T")
such that || {Q|QeS,(T") and Q= P}|| = 2°. Let B be an w-saturated, w-ho-
mogeneous model of T’. We choose b € B such that P(b,B) = P.
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Since || S,(T")| < w, by Lemma 7.8(ii), | o °] = 2°. For every PeS(T"), let
Hp = {K]K e " and P(K,B)> P}. Again since ]] $:(T) ]] =< o there must be
some A p of power 2°. Thus (i) is proved.

(i)  #°has a separating sequence, thus by Lemma 7.18(i), o p has a separating
sequence and by Lemma 7.18(ii) there is a subset of £, which is of order type 5.
Denote this subset by . Without loss of generality, b < K for each Ke ™,
Let o7 = {K},.o Where r - K is an order isomorphism. Let o be a real
number and K, = sup{K;|r <a} where the supremum is taken in %™. By
Lemmas 7.10, 7.14, and 7.15, P(K,,B) = P({c[ b £ ¢<K,},B). There must
be some « for which P(K,,B) = P({c [ b =c < K,},B) since otherwise
| S:(T") | = 2°. Let K, be the submodel of B whose universe is K,. By Corol-
lary 3.8 and since R, is w-saturated, | Sy(Ty)| < @. Denote T= T ; then
there is a’ € K, such that P(a’, ],) is isolated in S;(T). By the choice of K, there
is some a such that b < a < K, and P(a,B) = P(a’,B). Since B is w-homo-
geneous there is an automorphism f of B such that f(a) = a’. We show that
if Ke #?and a £ K < K, then f(K) € K,. First, notice that for every Ke 4
if a £ K<K,, then P(K,B) < P(K,,B), for otherwise P(K,,B) = P(K,,B)
for some r < a which, by Lemma 7.14, is impossible. Let Q € P(K,,B). Since
K, is w-saturated and SA, for every c€ K, there is ¢’ > ¢ which realizes Q. Set
K' = sup{KlKe X® and f(K)N K, # &} where the supremum is taken in
A°. If K’ is the maximum of the above set then P(K',B) 2 P(K,,B). If K’ is
not the maximum then by Lemma 7.10 again P(K',B)= P(K,B), but this is
possible only if K’ = K,; thus if a < K < K|, then f(K) < K,.

Let U be the submodel of B whose universe is f ~*(K,). By Lemma 7.12(ii)
if Ke #'gand K < A4 then K€ . By Lemma 7.12(i) if K;>a then K/e A7y
Combining the last facts we obtain that if r < « and K, > a then K/e o'y . Since
UA is w-saturated, A g is complete, hence || £ || = 2°. Since P(a’, &) is isolated
in S,(T) the same is true for P(a, ). It is now easy to select # = Ay as re-
quired in (ii). T, U, a, 2 have the properties mentioned in (ii).

(iii) Let o, be a subset of > with properties as in Lemma 7.18(ii). Let
{K,},eq = # o where r - K, is an order isomorphism, and let C, = {cla Sc
and ¢ < K, for some g < r}. For every reQ let X, < A be of order type 7,
and if K'€ A" then C, <K' < K,. Weselect K°, K*, K?, K3in "/ such that K°
<K'<K2?<K3.2 was chosen so that P(K,, W) = P(K3,N) 2 P(K%, A) =2 P(K!,
M= P(K°, A); by Lemma 7.14 the inclusions are all proper, and by Lemma
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7.17 there is Q, isolated in S,(T) such that Q.eP(K,, %) — P(C,,A). Hence
(iii) is proved.

(iv) LetceAand P(c,A) = Q,. We show that ¢ has the following property.
If g4,9, < r and ¢; > ¢ and P(c;, A) = Q,, then there is ¢, such that c < ¢; < ¢,
and P(c,, ) = Q,,. If q = max(qy,q,) then K, is w-saturated, SA, and
P(K,%)5Q,,,Q,, and P(K,, W3 Q,. Let ¢; >c and P(c,;, ) = Q,, Since A
is w-homogeneous and P(K,, )3 P(cy, A) there is an automorphism f of A
such that f(K,))a¢;, but f(K,)$c since P(K,, )3 P(c,A). By Corollary 3.3
there is ¢, < ¢y, ¢; €f(K,) such that P(c,;, A) = Q,,. Certainly a < c,. On the
other hand, if r < q; < q,, obviously there is ¢; > ¢ such that P(c,, ) = Q,,
and P((c,¢,), ) 3 Q,,

Let ¢,,,,(vo) be the formula expressing the following property of v,. If ¢; > v
and P(c;,A) = Q,, then there is c, such that vy < ¢, <c¢; and P(c,, N) = Q,,
and if ¢; > v, and P(c;,A) = Q,, then there is ¢, such that vy <c; <¢; and
P(c,, M) = Q, . Such a formula exists since Q, is isolated in S,(T). For each
irrational « let

P, = {$g,0,(v0) | 41,92 < 2} U {~y,0,(v0) | 91,2 > ot} .

Since Q,> @,,,, for every q4,4, >r and @, $~¢, . for every q,,q, > r then P,
is finitely satisfiable. Obviously, if « # f then P, P, is contradictory. Since
each P, can be extended to a type in Sy(T), | S,(T)|| = 2°. This is a contra-
diction to the fact that | Sy(T)| < w and the theorem is proved.

CoROLLARY 7.22. If || S(T)|| S w, then for every n, | S(D)| < o.
The proof is trivial by Lemma 7.9.

REMARK. Another question could be asked in the same connection. If F,(T)
is atomic, does the same fact hold for F,(T)? The answer to this question is
negative: there is T for which F(T) is atomic and F,(T) is atomless.

DEerFINITION. Let U be a model, ac 4 and V = 4. Vis a halfneighbourhood
of a if there exists a convex neighbourhood W of & such that either
V=wWnla|or V= Wn|d].

DeriNITION. Let ¥ be a model, B < A. PeS,(Ty) is B, U isolated, if P is
realized in B, and there exists ¢(vo) such that for every b e B, W k ¢[b] iff AF P[b].
If v is an ordinal and v < w; we define d(v) = U {¢ | D%(wy) N (v + 1)# &}.
We define a sequence {a,}y<a,: %o =1; 41 =a, +1+v+1+dW) +1; if
v is a limit ordinal then a, = U ., a,.
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THEOREM 7.23. Let U be a countable, saturated model, a €A, and Lye D™(4%),
then P(Lo, W) N D'(S,(Ty) # &.

ProOF. If " < 4 let %" denote (X', 1) where © is the order topology
on X . X will denote (£, 7') where ©’ is the relative topology induced on ¢~
by . We prove the following claim by induction on v: for every countable,
saturated model A, for every ac 4, and for every L,eD™(H): P(L,y, W) N
D'(S(Ty) # & . The claim is trivially true for v = 0. By Lemma 7.7 and the
induction hypothesis it is true for v a limit ordinal.

Assume the induction hypothesis for v. We shall prove the following statement.

Statement 1. If Koe D**1*"*}( % and there exists a halfneighbourhood
V; of K, such that

() R(Kg, V1) = R(Ky, ) and

Gi) if By=U V;—K,, C € By, Cis definable over a and ¢(v,) is realized in C,
then there exists P € S;(Ty) such that ¢ € P, P is isolated and P is realized in C.

Then P(Ko, W N D" (S\(Tw) # &.

Proof of Statement 1. Without loss of generality, a < K,. Assume, by way
of contradiction, D***(S,(Ty))N P(Ky, A) = &. We show that there exists a
halfneighbourhood of K,, V < V; with the following properties:

(i) Vis a closed subset of o °

G Ur>a.

(i) Let B= UV~ K,; then for every C € B and for every ¢(v,) if C is
definable over a and ¢ is realized in C, then there exists P e P(C, ) such that
P is isolated and P 3¢.

(iv) For every &, D*(V) = DX(A™)NV.

&) P(UV,W N D'(S((Ty) = 2 is finite.

Since N is w-saturated and P(Ky, W) D" (Sy(Ty) = &, there is a neigh-
bourhood W of K, such that P( U W, W) n D*(Sy(Ty)) is finite. Since ™
is totally disconnected there is ¥V < W, where Vis a halfneighbourhood of K,
such that Vis closed and open in V;, then V satisfies (i)-(v). Thus we have proved
the existence of V.

For every Qe we define #'y: #y = {K|KeD™(V), QeP(K, %)}, then
for every Q, Ay is closed in V. By the induction hypothesis and by (iv),
D™(V) = U ges¥ - By (iv) and Lemma 7.4, K, € D **"*(D*(V)); by Lemma
7.5 there exists Q' € # such that R(Ko, #g) =R (Ko, D (V). Let "= A 'y.. We
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show that there exists ¥’ < "’ with the following properties.

(i) HLis closed in D*™(V).

(i) int(£,D™(V)) 2 A — {Ko}.

(ili) A is a neighbourhood of K, relative to " and 2™ € A
Suppose first that K, < V. Let K€ " such that if Ko < K; < K’ and K;e X'
for i = 1,2, then P(K., W N D'(S(Ty) = P(K,, W D(S,(Ty)), and such
that [Ko,D™(V), K']is closed and open in D*(V).Let K=2"'N[Ko,D*(V),K'];
then o has the desired properties: obviously %" has properties (i) and (iii);
suppose Ke # — {K,} but K¢int(£’,D"(V)), we have a sequence {K};c,, in
[Ko»# SK'1AD (V) = such that lim, K, =R. PK, MNP # &, s0 we
may assume that there is some Q in & which belongs to P(K;, %) for every i;
hence Qe P(R, %), but then Qe P(K, A) for all K in K. Take K,;>KeX';
then P(K, ¥) < P(K,, ) and K, € A contradicting the choice of K, . If V < K,
we define 4 similarly.

Let Kex'. If K # K, then R(K,#") = R(K,D"(V)) and by Lemma 7.4 and
the choice of ¥, R(K,#") = a, + R(K,). By (iii) and by the choice of
#', RKo, X)=R(Ko, #") = R(Ko. D"(V)); again a, + R (Ko, %) = R(Ko, £")
so that for K,K,e X, R(K;,#) = R(K;, X)) iff R(K,, #%) = R(K,, A™®).

Let K;eX', K; # Ko, i =1,2,3,4, K; <K, <K;<K,, and R(K,, %)
# R(K,, ). We show that there exists a formula ¢(v,) which is satisfied by
some element of conv{{a} U K;) and by no element of conv({a} U K;). If not,
then by Lemma 7.16 if Q,, -+, Q. are n-types which are realized in conv({a} U K;)
then <Q,,-+,Q,) is realized in K, . Take b,, b; in K, K3 respectively such that
P(b,, N = P(b;, A); then by Corollary 3.6, P({a, by), A) = P(Ka,b,), A) which
is a contradiction. By the third property of V there exists an isolated P in S,(Ty)
and some ¢ such that K; < ¢ < K, and P is not realized in conv({a} U K,) and
Ak P[c].

LetZ = D! (). Since  is closed in ™, by Lemma 7.19 o =X . So
by Lemma 7.20 there exists X < A such that:

() Ko¢X'.

(i) Let Ay = A U {Ko}; then Ay is complete.

(i) o is 4-disjointed in X .

(iv) Koecl(of, 2 = (A, ).

) RKo,#9) = RKo:X).
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Let KeX'; we define a formula ¢4 and a type Pg. Since ¢ is 4-disjointed
there are K; in ", 1 £i <4, suchthat {K'|#'5K' <K}<K; <K, <K,
< K, < K. By Theorem 7.1 there is £ such that D%(X") = (J so there are infinitely
many isolated kernels of X~ between K, and K;. We choose three of those:
K, <K?*<K?®<K*<Kj,. Since R(K,,#) # R(K?, X)), there is Py isolated
in S;(Ty) which is not realized in conv({a} U K;) buti s realized in K;. Let
¢k generate Py . Let Ke X and K’ be its successor in /. We define

Yi(vo) = VxIy(((x > vo A ¢x(x)) = (v <y <X A Px(¥)))
Ao <x A ¢g(x)) = (v <y <x A (YD)
For Ke g let Wg = {| 5L < K and Lhas a successor in %7} U {~!/IL|
A 5L 2= K and Lhas a successor in #'}. We claim:
(i) For every K € X there exists P € S;(Ty) such that P 2 ¥g.

(ii) If Ky <K, are kernels in J¢ then there is Yg(vy) such that Yy € ¥y,
and ~yyeW¥y,.

(i) If K # K, and K e D*(#'Y") then there exists Qg € D*(S;(Tw), ¥x < Qx:
and there exists ¢ such that K » ¢ < U{K’'|K <K’'e A} and Ak Qxfc].

To prove (i), it suffices to show that Wy is realized by some element of 9. Let
Ked, and K, <K, <K; <K, <K be the kernels belonging to 4 —,
such that Pg e P(K;, ) and Py ¢ P(conv({a} U K,), A). Choose ce K such that
P(c, W) ¢ P(conv({a} U K3), A); then AF ¥i[c], because all the P,’sfor L< K
are realized in K, which is SA. Since the W ’s are realized Wy, is finitely satisfiable
in A, hence there is P € S;(Ty) containing ¥y, for every K € #°,. We omit the
trivial proof of (ii).

To prove (iii) we define for every K € ", K> if K has a successor in " then

> = K, otherwise,

K> = Ku{b|K<b and for every K'e " ,if K'>K then b<K'}. K>
is the intersection of convex sets definable over a. We prove by induction on
¢ that, when ¢ < w; and K e D%(#'J") and K # K, then there is P € D*(S;(Ty))
such that Wx € Pe P(K>,¥). There is nothing to prove when & = 0. If & is
a limit ordinal K e D°(¢'y) and K # K,, then, by the induction hypothesis,
for every n < ¢ there is Q, € D®(Sy(Ty)) such that Q, 2 ¥y and Q, e P(K>, ).
Let Q be a limit point of {Q,},<s; then it is easily seen that Q 2 ¥,
Qe P(K>,%), and QeD(Sy(Tw).

Assume the induction hypothesis for £, and let K e D**}(KJ") and K # K,.
Let {L;};c, be a strictly monotone sequence of kernels in D%(#'y") such that
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lim; L, = K where the limit is taken in 2#°3". By the induction hypothesis we have
0, such that Q, € P(L;, A) N D*(Sy(Ty)) and Q; =¥, . Without loss of generality,
lim; Q; =Q;. By (ii), Q; # Q, for i % j so that Q € D***(S,(Ty)) . Clearly Q 2 ¥g.
To see that Q is realized in K> consider first the case when L; > K, then let
Lbetheinfimum of the L’s in J°; then L< K>, and obviously Q is realized
inL.If L; < K let Lbe the supremum of the L;’s in %£™; then Q is realized in L.
We remember that (), P(L, W A PK,A) # & so that by Lemma 7.11,
P(L,WyN P(K,N) # &, so P(L,N) = P(K, W), thus Q € P(K, N). We may now
show that K, has a similar property; that is, since as we shall see, Ko, € D**1(£°9"),
there is some Qe D *'(S,(Ty)) such that Q @ Wy, and Q is realized in K.

Koe D™ 1 1(54% hence Koe D™ 1 +**Y(V). By Lemma 7.4, K,e D**"*!
(D*(V)). We chose " so that Ky € D****1(2¢). Since A is a neighbourhood of
K, relative to o, KoeD**"*1(#); again by Lemma 7.4, K,eD**'(X)
hence K,e D" (#'3"). To show the existence of Q with the properties mentioned,
we merely have to repeat the same arguments.

We deduced that D**!(S,(Ty)) N P(Ko, A) # & in contradiction to our as-
sumption; hence it must be the case that D**(S,(Ty) N P(Ko, N) # & .

Now that we have proved Statement I we proceed to the general case. Let
LoeD*(A™ ). We may assume that a < L,. We define V; = {K IK e A and
a £ K < Lo} and ¥, = {K|KexX*® and L, £ K}; then by Lemma 7.5 either
R(Ly, V;) = R(Ly, &™) or R(Ly,V,) = R(Ly, #™*). We consider the first case.
Assume by way of contradiction that P(Lg, %) N D'*'(Sy(Ty) = &. Let
B = {JV,—L,; we may assume that P(a, ) is B, isolated for otherwise
we replace a by be B such that P(b, %) is B, ¥ isolated, and by Lemma 7.12(i),
L,eD%+1(A®). Let V ¢ V, be a halfneighbourhood of L, with the following
properties:

(i) Vis closed in 4.

(i) For all &, DYV) = DA N V.

(i) D'S(Ty) "P(UV,A) = is finite.

@) D S(TW)NP(UYV, W =J.
We now choose o™ and £~ as before; then L, gptrvrirdmtt (). Thus there
is KoeD'***Y(A#) and K, # L,. We take K;, K, in A such that
R(K{,H*) # R(K,,#*) and K, < K; < K, < L,. By Lemma 7.16 there exists
an automorphism f of U such that f(K,) 2 conv({a} UK,). Let K; = f(K,);
R,,8 5 are the submodels of U whose universes are K, and K5 respectively.
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P(f~Ya),N) is K,, A isolated, hence by Lemma 7.8(i), P(f ~*(a), &,) is isolated
in Sy(Tg,). Hence: (i) P(a,R;) is isolated in S,(Tx;). Let U = {KIKG.%"Q
and a < K<K,}. By Lemma 7.12(i), U € ¥, ,. Hence we conclude (ii):
KoeD™ '™ 1 ¢%3) Let B'= JU,and C€ B', C= | K3 |y.. Let ¢(vy) be
a formula which is satisfied by a member of C. Since R is w-saturated and since
by Lemma 7.8(i) only countably many types of S,(Tg) are realized in K3, S;(Ta?)
is countable and therefore atomic. Let av,) generate P(a, ]3) and let Q€ S;(Tx!)
be isolated and Q> 3x(x(x) A Y(X,)) A ¢(vy); then it is easily seen that Q is
realized in C. From the first part of the proof we now conclude that there is
PeD"*Y(8,(Ts) N P(K,, 8. Let ceK, realize P; then by Lemma 7.8(i),
P(c, We D' (S,(Ty). Since we chose KyeV, P(Ko, W N D (Sy(Tw) = &,
and we arrive at a contradiction. Hence it must be the case that

P(Lo, YN D" (S(Ty) # &

We now turn to the case when R(L,,V,) = R(Lg, £ ). Assume again that
D' Y(S(Ty) U P(Lo, W) = &, and choose V = V,, a halfneighbourhood of Ly,
such that P( U V) nDY(S,(Ty)) is finite, P(J V)N D***(S(Ty)) = &, and V
is closed in #®. We show the impossibility of the following situation: there
exists Ko e D* 1 YA NV, K, K e 7%, P(K, W< P(K,, W), Ko < Ky <K,
R(K{, ™) # R(K,, %) ,and a < b < Ky such that P(b, U) is conv ({a} U K,), A
isolated. Suppose such a situation does occur. By Lemma 7.16 there is an auto-
morphism f of U such that conv({a} U K;) < f(K;). Denote &, and K the
submodels of U whose universes are K, and f(K;) respectively. By Lemma
7.8(i), P(f ~1(b), &,) is isolated in S;(Tg3), thus P(b, ]}) is also isolated in S,(Tg;).
By an argument already used before, we conclude that if C € f(K,), C is definable
over b in K and ¢(v,) is a formula which is satisfied in K by some element
of C; then there exists P isolated in S,(Tg3) such that P € P(C, K;) and P 5 ¢(v,)-
Again, by Lemma 7.12(i), (ii), K, € D™ 1*** (o 4:). Now, by the first part of
the proof, P(Ks,R)ND"*'(Sy(Ta) # &, and by Lemma 7.8(0)
P(Ko, WND "' (S(Ty)) # & contradicting the choice of V.

Let & = D**1*"*1(y"A V. By Lemma 7.20 there is o < X with the
following properties:

() Le¢x.

(i) Let Xy = oA U {Ly}; then Xy is complete.
(iiiy o is 2-disjointed.

(iv) R(Lo,#Q) = R(Lo, ).
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We define t: ¢ < w;:

%K) = min{R(P, S;(Ty)) | P € P(conv({a} U K), W} .

Obviously, if K, < K, then ©(K,) = ©(K,). We show that also 7(K,) > 7(K,).
If not, then (K;) = ©(K,;). Let L, L, e D** """ and K, < L, < L,<K,.
There is some Lje 4™ such that L; < Ly < K, and R(L;, ™) # R(K,, X™).
Let beconv({a} U K,) and R(P(b, N), S{(Ty)) = «(K;). Thus R(P(b, A),
S(Ty)) = ©(K>), hence P(b,N) is conv({a} U K,), A isolated. But the existence
of such b, L;,L;, K, was proved impossible in the last paragraph, therefore
©Ky) # 1(K3).

Hence 7 is order reversing, thus 3 is well ordered. Let {K,},<;4+; be an iso-
morphism between 5 and 6 + 1. Certainly L, = K;, thus 7(Ly) = 6. But
LyeD**(V), hence by Lemma 7.4, L,eD**Y(D™*1+7 LYy therefore
Loe DY), so  LoeD*™*Hx9), so eD*P* 5+ 1)=D'M! (w,),
but v+ 1D Yw) = F thus 6= v+1 and hence ©(Ly) = v+ 1. Re-
calling the definition of T we deduce that P(L,, ) < D”“(Sl(Tu)) in contra-
diction to our assumption on L,. We now conclude that P(Ly, A) N D" *(S,(Ty))
# &, and the theorem is proved.

We now turn to prove a topological lemma. If X is a topological space and #
is a partition of X we denote the quotient space by X/# . The definition of X/#
can be found in [3, p. 97]. If X is Hausdorff compact and & consists of closed
sets then X/# is Hausdorff compact.

Lemma 7.24. Let X be a countable Hausdorff compact space, # a parti-
tion of X consisting of closed sets; let M = (J {R(F)IFeﬂ'} + 1, and let
xeFe#; then R(x,X) £ M -R(F,X|# )+ R(x,F).

ProOF. We prove the lemma by induction on R(F, X/#). Let R(F, X/%) = 0;
then F is open in X, X — F is closed in X; by Lemma 7.5, R(x, X} = R(x, F)
and the inequality holds. Suppose the inequality holds for every x € F € # such
that R(F,X/#)<v. We prove by induction on R(x,F) that if xeF and
R(F,X[#) = v then again the same inequality holds. Suppose the inequality
holds for every x € F such that R(F,X/#) = v and R(x,F) < ¢, ¢ 2 0, and let
R(x,F) = £ and R(F,X/#) = v. Let U be a neighbourhood of x relative to X
such that for every ye UN F if y # x then R(y,F) < £. Let V be a neighbour-
hood of F relative to X/# such that for every GeV, R(G,X/#) <v, and let
W = (UV)nU. Wis a neighbourhood of x relative to X. If ye Wand y # x
either y € F, and then by the induction hypothesis and the choice of U,
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Ry, X) S M:-v+R(y,F)<Mv+¢

or ye G # F, and then by the induction hypothesis on R(G, X/ and the choice
of V, R(y,X) < M-R(G,X|/#)+ R(y,G)<M-R(G,X/F) + M =M-(R(G, X
[F)+1) £ M-v + &, Therefore, for every ye W if y # x then R(y,X) <M
v+ ¢, thus R(x,X) S M-v+ ¢ = M-R(F,X/#) + R(x,F).

QED

We shall need the following corollaries.

CoROLLARY 7.25. (i) Let X be a countable Hausdorff compact space, F a
partition of X consisting of closed set s; then R(X)<( Ug.s R(F) +1)
‘(R(X/F) + 1).

(ii) If X,Y are countable Hausdorff compact spaces then
R(X x Y)<(RX) + D(R(Y)+1).

Proor. (i) is proved by taking upper bounds of both sides of the inequality
in Lemma 7.24 when x ranges over X .

To prove (ii), let # = {X x {y}l yeY}; then & isa partition of X x Y con-
sisting of closed sets, and each F €% is homeomorpbhic to X, hence R(X x Y)
<RX)+ 1 (RX x Y/#) +1). But (X x Y)/ #is homeomorphic to Y and
(ii) is proved.

We shall now partition S,(T); each element of the partition will again be par-
titioned. By means of the two partitions and Lemma 7.24 and Corollary 7.25 we
shall find an upper bound for R(S,(T)) in terms of R(S(T)).

Let A be an w-saturated model of T. We first partition S,(T): if P€ S\ (T)
let Sp = {Q|QeS,(T) and Q 2 P} and F={Sp| PeS,(T)}. Certainly & is a
partition of S,(T) consisting of closed sets. Let ae | QII and P = P(a, ). We
now partition Sp: if Ke ™ let Spx = {Q|Q€S,, and there is some be K
such that Q = P({a,b), MW)}.

Let #p = {Spx l K e} . By Lemma 7.7(i), % p consists of closed subsets of
Sp. By Lemma 7.2 it is easy to see that 2™ (with the order topology) is homeo-
morphic to Sp/Fp. Let Spx = {0]0e5,(T) N P(K,MW}. By Lemmas 7.2 and
7.8(iii) Sp ¢ (as a subspace of S,(T)) is homeomorphic to Sp .

COROLLARY 7.25 and the above remarks yield:
(1) R(Sp) < [UgexsR(Sp)+1] - [R(Sp/Fp)+1]S[R(S(T)+ 1] [R(HA)+1].

It is again easy to see that the function P — S, is a homeomorphism between
S(T) and S,(T)/ # hence
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@  RSXm<| U Rsp+ 1] [RSATYF) + 1]

PeS(T)
< [(R(Sl(T)) +1) (UA R + 1) + 1] -[R(S(T)) +1].

From Theorem 7.23 we deduce
3) If R(S{(T)) <v then for every ac A, R(X°) < a,.

Combining (2) and (3) we obtain Theorem 7.26.
THEOREM 7.26. If S(T) is countable and R(S((T)) <v then
RS,(TH<[(v+ 1) (a, + 1) +1]-(v+1).

It is now easy to find similar upper bounds for S,(T) when n > 2. By Lemma
7.9, S,(T) is the union of a finite number of closed subsets each of which is homeo-
morphic to a subset of (S,(T))"~!. By Lemma 7.5, R(S,(T)) equals the maximum
rank of the mentioned closed sets. Thus R(S,(T)) <R((S(T))"~'); combining the
last inequality with Theorem 7.26 and Corollary 7.25 we obtain Theorem 7.27.

THeOREM 7.27. If S4(T) is countable, R(S(T)) <v, and n = 2 then
RS(MY)<[[v+ D @+ +1]-(v+ 1t
REMARK. It is easy to see that [(v+ 1)(a, + 1)+ 1]-(v+1) S v*-4+20.
Thus if R(S,(T)) < v then R(Sy(T)) < v* - 4 + 20.
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