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ABSTRACT 

Let Tbe a complete theory of linear order; the language of Tmay contain a 
finite or a countable set of unary predicates. We prove the following results. 
0) The number of nonisomorphic countable models of T is either finite or 2`0. 
(ii) If the language of Tis finite then the number of nonisomorphic countable 
models of Tis either 1 or 2`0. (iii) If Sl(T) is countable then so is Sn(T) for 
every n. (iv) In case SI(T) is countable we find a relation between the Cantor 
Bendixon rank of SI(T) and the Cantor Bendixon rank of Sn(T). (v) We define 
a class of models,5~', and show that SI(T) is finite iff the models of T belong tonga. 
We conclude that if SI(T) is finite then T is finitely axiomatizable. (vi) We 
prove some theorems concerning the existence and the structure of saturated 
models. 

Introduction 

In  this paper  we deal with complete theories whose models are o f  the type 

9~ = (A,  < n , P ~ , . . . ) w h e r e  < ~  linearly orders 9~, and ( e i ,  ..., P, ,  -..} is a 

finite or  a countable set o f  unary predicates. In  a well-known example Ehrefeucht 

shows that,  for  every positive n # 2 there is a theory T as mentioned above 

which has exactly n nonisomorphic  countable models. In  Section 6 we shall show 

that  every such T has either finitely many  nonisomorphic  countable models or  2 ̀ 0 

nonisomorphic  countable models. We thus obtain a complete answer to the 

quest ion:  given a cardinal 0~ is there a theory T, as mentioned above, such that  T 

has exactly 0~ nonisomorphic  countable models. 

I f  the language o f  T is finite we shall sharpen our  result and prove that  either 

T is to-categorical or  T has 2`0 nonisomorphic  countable models. 

t Most of the results in this paper appeared in the author's Master of Science thesis which 
was prepared at the Hebrew University under the supervision of Professor H. Gaifman. 
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In Section 5 we characterize the complete theories of  linear order T whose 

language contains a fixed finite set of  unary predicates, and for which St(T) is 

finite. We define the class ~ ' ,  as the smallest class of  models which contains 

all the models with a single element and which is closed under the following 

operations. 

(1) s ( ~ , ~ )  = ~ + 

(2) d(9~1,..., 9~) = ]E ,~ Q 9" ,  where Q is the ordered set of  rationals and the 

family {{r[ 9.V ~ 9~,}[ i = l, ...,n} is a partition of  Q consisting of  dense subsets 

of Q.  

(3) z(9~) = 9~. Z, where 7/ is the ordered set of  the integers. 

We shall show: (i) For T, as above, the following conditions are equivalent. 

Condition I. SI(T) is finite. 

Condition II. T has a model which belongs to ~ ' .  

The following results will be then inferred. (ii) If  SI(T) is finite then Tis finitely 

axiomatizable. (iii) For every n the set (T III SI(T)[I <= n} is finite. (i) and (ii) 

are related to [6] and [4]. 

Rosenstein in [6] showed that if we define ./ / / to be the subclass of  S~' which 

is closed only under operations (1) and (2) then Tis og-categorial iff T has a model 

which belongs to ~g. Rosenstein also showed that if T is og-categorial then it is 

finitely axiomatizable; (ii) extends this result. Laiichli and Leonard in [4] define 

another class of models ./ff such that~g"_ ~ ' .  They replace the operation (3) 

by the poerations 

( 4 )  co(9~) = 9~" 09, 

(5) co*(gj) = 9~. co*, 

and define .A r as the smallest class which is closed under (1), (2), (4), and (5). 

They prove that every sentence which is true in some linearly ordered set is also 

true in some model which belongs to J / ' .  So they conclude that every complete 

theory which is finitely axiomatizable has a model which belongs to sV'. However 

it is not true that the complete theory of  every model in J/" is finitely axiomati- 

zable, (take for instance to + w*). 

In Section 7 we show that if T is a complete theory of  linear order with not 

more than 09 unary predicates and II s,(r)II -< then II s.(r)It =< ~ for every n. 

Indeed, the difficulty is in going from SI(T) to S2(T). Another question of  the 

same nature is whether the statement that FI(T ) is atomic implies that Fz(T) 
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is atomic. The answer to this question is negative; there is a complete theory 

of  linear order T such that FI (T  ) is atomic and F2(T) is atomless. 

We shall measure the size of  S,(T) by its Cantor-Bendixon rank (see the def- 

inition in Section 7). We shall prove the following theorem: if T is a theory of 

linear order (again with = co unary predicates), SI(T) is countable and the rank 

of  S1(T) is less than v, then the rank of  S2(T) is less than v 4 .4  + 20. 

In Sections 2, 3, and 4 we shall develop the basic notions of this paper. In Sec- 

tion 2 we deal with the properties of  sums, with convex submodels, and with 

testing formulas. 

We shall call a model 93[ selfadditive (hereafter abbreviated SA) if whenever 

~3 = 9.[ then 9.[ + ~ -  9~,~. In Section 3 we shall prove that if II II > 1, then 

9~ is SA iff it has no convex definable subsets other than ~ and 1 9~[. We shall 

prove some other useful results concerning SA models. 

In Section 4 we deal with saturated models. Roughly speaking, an o-saturated 

model is the sum of its definable elements and some SA submodels. Each sum- 

mand in this decomposition is the intersection of  definable convex sets; we call 

these summands kernels. By means of Theorem 4.11 and Corollary 4.12 we 

find in which cardinalities a complete theory of  linear order T has a v-saturated 

model. In Theorem 4.14 we show that every ~ elementarily equivalent, 

~-saturated infinite models of  cardinality less than or equal to ~ have a com- 

mon elementary extension of  cardinality c~ which is ~-saturated. 

We mention two open questions: 

(i) Suppose we define the rank R(X) of a topological space X t o  be the first 

v such that Dr(X) = Dv+I(X) where Dr(X) is the Cantor Bendixon derivative 

of  X of  order v. Is there still a function f :  co 1 ~ o h such that for S~(T) (not 

necessarily countable) R(SI(T)) < v implies R(S2(T)) < f(v)? 

The following question was first asked by Laiichli and Leonard in [4]. 

(ii) Suppose that ~b is a sentence which is consistent with the axioms of  linear 

order. Is there always a sentence ~k such that I-~ ~ q~ and ff is a finite axioma- 

tization of  a complete theory of  linear order ? 

We believe the answer to both questions is positive. 

REMARK. After the manuscript was completed, S. Shelah proved that ques- 

tion (ii) has a positive answer, that is, there is always a ~ which is an axioma- 

tization of  a complete theory of  linear order such that ~ ~k I- ~ .  
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1. Preliminaries and notation 

Ordinals will be denoted by letters v, 4, e, c5. Cardinals are defined to be initial 

ordinals, 0~, /~, y denote infinite cardinals, co denotes the first infinite cardinal, 

0~ 2 =  ~ v<a0~ v. Natural numbers are denoted by i, j ,  k, l, m, n . The cardinality 

of a set A is denoted by [IA I1" If  9.I is a model we denote its cardinality 

by I[ 9/[I, ~, b, P, ... will always denote finite sequences, d a b  is the concate- 

nation of  d and b. If  X is a topological space and A _~ X then el(A, X) and 

int(A, X) denote the closure of  A in X and the interior of A in X respectively. 

Our language is always a first order language with equality. We use 

V, Vo, Vl, . . .  U, Uo, Ul, . . .  X, Xo, X~, ... Y, Yo, Y~, "'" Z, Zo, Zl, "'" as individual variables. 

If  not otherwise stated, the nonlogical symbols in our language will always 

be: one binary predicate < ,  and a set { P i l i < v }  of unary predicates where 

0 _< v _ co. We shall occasionally call such a language a typical language. We 

make the following conventions: if not otherwise stated, a model always means 

a model in a typical language; a language always means a typical language, 

L and L' denote typical languages. If  9.I is a model then L(~)  and Ta denote 

the language of  9.I and the complete theory of 9~ respectively. A theory always 

means a complete theory in a typical language which contains the axiom saying 

that < linearly orders the whole universe. T and T '  denote theories. The uni- 

verse of a model 9.I is denoted by 19/I. 9 / =  (A, < , P 1  .. .),  ~3 = (B, < , P t - . . ) ,  

= (C, < ,P1 ,  "") ,  ~ = (D, < ,P~,  . . . ) and  R = (K,  < , P 1 , ' " ) d e n o t e  models; 

subscripts and superscripts may be added. The definition of  some B g 19.II 

automatically implies a definition of the model ~3, which is the submodel of 9.I 

whose universe is B. The interpretation of  the predicate R in the model 9.i is 

denoted by R a,  the interpretation of < in 9.I is denoted by < a ,  but, naturally 

we omit the superscript 9 /when  no confusion may arise. We always interpret 

< as a linear order whose domain is the whole universe. 

If  L _~ L(9I) then 9.I [" L denotes the model obtained from 9~ by restricting the 

interpretation to the symbols of L. If  a 6 19.I] we occasionally enrich 9.I by adding 

an individual constant to L(~i) and interpreting it as a .  It will always be under- 

stood that c~ denotes this new constant and c7 is interpreted in 9.I as a .  If  

a l , ' " , a , ~ ] 9 . I  I then (9.I ,(a1, . . . ,a ,))  denotes the model obtained from 9/ by 

adding individual constants to represent a~, . . . ,a , .  ~3 c ~1~, ~3 -< 9.I, ~3 = 9.I,~3 ~ 9.I 

respectively denote that ~3 is a submodel of  9/, ~3 is an elementary submodel 

of  9.I, ~ is elementarily equivalent to 9~ and ~3 is isomorphic to 9.I. ~3-<g 9.I 

means that g is an elementary embedding of ~3 into 9~; when there is no risk of  
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confusion, we shall omit the g. ~3 cg  92 means that # is a monomorphism of~3 into 

9~. If  {9.Iv I v < ~/} is a chain of models then Uv<, 92, denotes the union of this chain. 

I f  for every i ~ co, 92i -~ o, 92i + 1 then Ui ~,o(92~, g~) denotes the limit of this sequence. 

We define the quantifier depth of a formula and denote it by d(q~). If  ~ is atomic 

then d(q~) = 0; d(3xq~) = d(Vx~b) = d(tk) + 1; d(~b ~ ~) = d(q~ V~k) = 

d(r  ~) = max(d(~), d(r and d (~  qb) = d(~b). We say that 92 ~- ~3, if for 

every sentence ~b, if d(~b) < n, then ~b ~ T~ iff ~b e T~. 

Let <al,...,a,>E[92[" and (b l , . . . , b , ) e [~3]" ;  we say that (at ," ' ,a , )  -~ 
( b l , ' " ,  b,) if the function ai ~ bi i = 1, ..., n is an isomorphism of 9~' and 

~B' where 92' and ~3' are the submodels of 92 and ~ whose universes are (al,  "", a,} 

and {bl,-.., b,} respectively. 

Let ~ be a set of formulas, possibly with parameters from [ 92[, and for each 

q ~ O ,  q~ has its free variables among {v0,.-.,v~_l}. Let   1921 we write 

92 ~ ~]-d] to denote that for every q~ ~ ~, (92, b) ~ q~[d], where b is the sequence 

of the parameters which occur in. q~. We shall say that ~ is finitely satisfiable in 

92, or �9 is a type in 92 if for every finite ~o _c ~ there is d~A" such that 

9 2 ~ o [ ~ ] .  Suppose B _~ [92]; we shall say that �9 is finitely satisfiable in B 

relative to 92 if for every finite ~o -~ ~ there is b ~ B ~ such that 92 ~ O[b]; we omit 

the reference to 92 when there is no risk of confusion. Let B _~ [ 92[; we say that 

is a complete type with n variables over B if �9 is a type in 92 and for every 

~b(Vo,..., v,_ ~) with parameters in B either q~ ~ �9 or ~ ~b ~ ~ .  We say that 

realizes �9 in 92 if 92 ~ O[-d], �9 is realized in 92 if there is d e A ~ such that 92 

�9 [d] ,  �9 is realized in B relative to 92 iff there is ~ ~ B ~ such that 92 k ~ [b ] .  

Let F,,(T) be the Lindenbaum algebra over T of formulas whose free variables 

are among {re, "", v,_ 1}; we identify the elements of F,,(T)with the formulas of 

which they consist. S,(T) denotes the Stone space of  F~(T). We identify S~(T) 
with the set of complete types with n variables over the empty set. We regard S~(T) 
as a topological space; the topology is always understood to be the Stone topology. 

Thus S,(T) is a compact Hausdorff totally disconnected space. We say that 

S,(T) is atomic if F,(T) is atomic, that is, S,(T) is atomic iff the set of isolated 

points is dense in S,(T). Trivially S~(T) has a countable basis of open sets. 

Let 92 be a model of T, and a~A"; then P(d, 92) is the single type in S,(T) 
which is realized by d. If  a e A then P(a, 92) = P((a), 92), if B _~ A then 

P(B, 92) = {P(b, 9Y) I b ~ B}. Let P and Q be types in 92; we say that Q supports 

P if for every ~3 >- 92 and every b ~ B" ~3 ~ Q[b] implies ~3 ~ P[b] .  
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DEFINITION (i) 92 is called y-saturated if for every B __q A (such that IIB II < Y) 

and for every type �9 in 9.I (with one variable and parameters in B) there is a ~ A 

such that 92 ~ ~ [ a ] .  

(ii) 92 is called y-homogeneous if for every B _ A (such that [I B I1 < ?) and 

for every f :  B -~ A, if P((bx, "', b,>, 92) = P((f(bl), ..., f(b,)>, 92) for every n 

and bx,-'-, bn ~ B then there is an automorphism f of  92 such that f_~ f .  

Let 92 be a model, �9 a set of  formulas whose free variables are among {v o, ..-, v,} 

and deA n. We define 1921.,~ = {blbeA and 9 2 ~ [ b ,  ti]}. 192[~.n, ]~[l~.a, 
1 921o, etc., abbreviate 1 92 I,*,,,, ] 92[*,,a,, 1 921o,A, etc, where A denotes the empty 

sequence. We shall write 92.,~, 92,,a, etc. to denote the submodel of  92 whose 

universe is 1921o, , 1921 ,o, etc  respectively. The notation 9~,,~ always implies 

that 9 2 . , ~ # ~ .  
B ~ 92 is said to be definable over ~ in 92 if there is ~b such that B = 1 92 1,,~" 

B is said to be definable in 92 if B = 1 92 I~ for some ~b. b r [ 92[ is definable over 

if {b} is definable over d, and b is definable in 92 if {b} is definable in 92. Let 

~b(Vo, d) be a formula with parameters from 92, and let ~,(x~,-.., x~) be any form- 

ula. We define the relativization of ~, to 6 to be the formula Z which expresses 

the fact that Xl,...,x~ satisfy ~/J in the submodel 92§ that is, for every 

We turn to linearly ordered sets. If  not otherwise stated, < denotes a linear 

order. < ,  > ,  > ,  -t:, :b, have their conventional meanings. Let 92 be a model, 

a, beA and a < b; then (a, 92, b), [a, 92, b], (a, 92, b], (a, 921, [a, 921,192, b), 
and [ 92, b] respectively denote the sets {c[ceA and a < c < b}, {clc~A and 

a < c < b } ,  {c]c~A and a < c < b } ,  {c]c~A and c>a}, {clc~A and 

c > a}, {clc~A and b > c}, and {clc~A and b => c}. If  B ~_ 1921 we define 

conv(B, 92) = {clc A and bl < c < b2 for some bl,b2~B}. When there is 

no risk of confusion we omit the 92 from our notation, so the abbreviated no- 

tation will be (a, b), (a, b] ,  etc., (a l, [b] , etc., and conv (B). 

Let 92 be a model. We define a partial order of  the subsets of] 92[: if B, C ~ [ 92[ 

then we say that B < C if b < c for every b~B and every c~C; we say that 

B <  C i f b < c f o r e v e r y  b E B a n d c ~ C .  W e s a y t h a t a < B i f { a } < B ,  etc. 

We say that B 4: C if it is not true that B < C. Let B _ ] 921; we say that B is 

bounded from above, if there is a ~ A such that B < a; B is bounded from below, 

if there is a c A  such that a < B; B is bounded if B is bounded from above and 

from below. 
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Let (I ,  < )  be a linearly ordered set. For every i e I ,  let 9~ be in the language L. 

Assuming that A~ c3 A# = ~ for every i ~ j we define 9.I = ~ t 9~ to be the 

following model: I~1 = U ,~, A,. a < ~ b  if there is i such that a < n ' b ,  or 

a eA~ b ~A# and i < j .  For every unary predicate P of L, P~ = U ~ t P  ~'. 9.I is 

called the sum of  the 9.Ii's. By 9~ + ~ we always mean that the elements of B 

are greater than the elements of A. 

Let ~ = (C, < )  be a linearly ordered set, and 9~ a model in any typical lan- 

guage L. We define the model ~B = 9.l. ~ .  ~B is a model in the language L. 

= ~ ~ ~ c 9.I~ where for every c �9 C, 9~ is a copy of 9~. 

We need a fixed notation for two particular ordered sets, namely, the integers 

and the rationals. (Z, < )  and (O, < )  denote these ordered sets respectively, 

However, we shall always write Z to denote (~, < )  andr to denote (Q, < ) .  

I f  9~ = (A, < )  is a linearly ordered set then 9~* = (A, < * )  denotes the ordered 

set obtained by reversing the order of 9~, that is, a <* b if b < a .  

2. Convex sets and the properties of  sums 

DEFINITION. Let 9~ be a model and B ~ A. B is called a convex subset of 

9~ if for every bl, b2 �9 B, if b e [bl, b2] then b ~ B. ~ _~ 9~ is called a convex 

submodel of 9~, if I~]  is a convex subset of 9~. We write ~ C 9~ to denote 

is a convex submodel of 9~, and ~3 Cg 9.I to denote that g is a monomorphism 

of ~3 into 9~ with a convex range. 

REMARK. We may give a general definition of a convex submodel: ~3 _~ 

is a convex submodel of 9~ if for every n, k, a �9 (A - /3)  n and/31,152 e B k , if/31 =~/32, 

then d"/31 ~ d"b2 .  Many results in this section can be formulated so that they 

will hold for the more general notion of a convex submodeh 

The nice properties of sums of models result from the fact that each summand 

is a convex submodel of the sum. 

We list some well known facts about sums. Proofs may be found in I2, (5.1), 

(5.2)], however the reader will find it very easy to prove the lemma, using Ehren- 

feucht's criterion. 

THEOREM 2.1. Let  (I ,  < )  be an ordered set; for  every i ~ I  let ~ , ~  be 

models in the language L and ~ ~ A k~, b i e B~'. Let  9i = ~ ~ t 9~, fB = ~ ~ ~ x ~ ;  

then 

(i) i f  f o r  every i e I, ~ = ~ ,  then 9~ - ~ .  
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(ii) if  for  every i e I ,  9~-93 i and for some i l , . . . , i m e l ,  (9~j,d~j) = -- (93ij, bij) 
- A  - A  A - A ' A  A b �9 where j : 1 , . . . ,m,  then (9~,ai,ai2,...,ai~) - (~,[~i,bi2,..., ~,~) 

(iii) (i) and (ii) are true when - is replaced by ~ .  

(iv) i f  for  every i, 9~ i -< f~i then 9~ ~ 93. 

The following lemma can be inferred from [2, (4.7). (4.8)]. We prefer, however, 

to give a proof  of  our own. 

THEOREM 2.2. Let L(9~) be finite, and 93 .C 9.I. For every m >= 0 and 

l > 1 there is a finite set of formulas | such that for  every k. >= 0 and for 

every formula dp(vl,...,vt, x , , . . . ,Xk) with at most m quantifiers and for  every 

d e ( A - B )  k there is tk*(v, , . . . ,vt)e |  i'm "such that for every [~eB z 9.I~ q~rb, d] 

i f f  93 ~ ~*[b] .  

PROOF. We proof  by induction on m that the theorem is true for m and for 

every I. For m = 0, let | be a finite set of  formulas without quantifiers 

with free variables among {v,,..., vl} , such that for every formula without quan- 

tifiers ~b(vl, ..., vt) there is ~b e | such that -~ ~b ~ ~k. Obviously, | has the 

desired properties. 

Suppose the induction hypothesis is true for m. Let O := O~'mu {3 vl + ~kI~k e O l + "m} 

and 

e ' ' ' + '  = O, 0 , , . . . , 0 . }  --- e u ~ v 0 , I { 0 , , . . . , 0 . }  --- e . 
i =  i = I  

Certainly | is finite. Let ~(Vl,...,Vt, Xl,...,Xk) be a formula with m + 1 

quantifiers, and let d e  ( A -- B) k. We may assume that Z = 3yq~(vl, ..., vl, y, x~,.. ",Xk). 

By the induction hypothesis there is a finite set of formulas {~kl(vl, ..., vt) , '" ,  

~k,(vt,...,vt) } ___ | such that for every c e A - B  there is i such that 

for every b e B  l, 9 ~  ~blb, c, d] iff 93 ~ ~ki[-b-]. By the induction hypo- 
1 + 1  m thesis there is ~(vl, v z , . . . , v , y ) e O  ' such that for every /3eB ~ and c e B ,  

9~ ~ ~b [b,c, d] iff 93 ~ ~k [b,c]. Let X*(v~, "", v , ) =  (V,'.=~ ~k,) v ~y~k, then 

Z* e | ~ and it is easily seen that for every b ~ B t, 9.][ ~ Z[b, d] iff ~ ~ z*[b] .  

Hence the lemma is proved. 

Theorem 2.2 was formulated only for finite languages. This was done because 

the finiteness of  0~'~ was essential to the induction process. However, the main 

result of  the theorem is also true for infinite languages. 

COROLLARY 2.3. Let ~ be a model in a finite or infinite language L; let 

93 ~ 9.i. Then for  every formula ~(v~,..., vt, xD. . . ,  Xk) and for  every d ~ ( A -  B) k 

there is ~b*(vl,...,v~) such that for  every b e B  ~, 9.I~ t~[b,d] i f f ~  ~ q~*[b]. 
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PROOF. Since ~ ~ L' C ~ ~ E for any finite sublanguage of L, L', Theorem 2.2 

may be applied. 

Suppose 9j, ~3, ~, d, and ~* are as in Corollary 2.3; we then call ~* the testing 

formula of ~b(vl, ..', vl, d) in the convex submodel fiB. 

COROLLARY 2.4. Let L(9~) be finite or infinite, let B be a convex subset o f  

9.I, FeA"  and B definable over ~ in 9~. Let ~(vl , ' " ,v l ,  x l , ' " , xa )  be a formula 

and d e ( A - B ) k ;  then there is a formula c~*(vl,...,vz, F) such that for  every 

D e A  ~, ~ q~*[b,d] iff  DeB  z and ~ ~[b ,d] .  

PROOF. Let Z(Vo, e) define B over ~. Let 4h(vl, "", v~) be the testing formula 

of 4~ in ~3, let 4h(v~,--',vz,~) be the relativization of qS~ to Z(Vo,r and let 

~* - A~=lx(o,v~) A q52, then ~* is as desired. 

The next lemma roughly states that the testing formulas do not change if we 

replace the convex submodels ~ i  of  9.I by elementarily equivalent models ~3~. 

LEMMA 2.5. For every i e I ,  let ~ ( 9:I, and if  i # j then B~ N By = ~j . 

Let ~ = ~ i f o r  every i e I .  We assume that ( ~ i ~I B~) f~ A = k?J. Let 9~' be de- 

fined as follows: A'  (A ~ ~ I B i )  U B'  = - Ui~I i . L e t a ' e A ' ,  a n d P b e a u n a r y  

predicate in L(9~); then a '~P  ~' iff  a' e P ~ or a' e P~'. for some i ~ I .  Let a, b e A '  

then: a <~'b iff a <~b,  or a < ~" bfor  some i e I ,  or beB'~ and a e B~ and 

B~ <~IB i, or beB~ and a <~Bi ,  or a e B j  and By < ~ b ;  then 

(i) let d e ( A -  [..J i~1Bi) k, j e I ,  ~b(v~,...,v~,d) and ~*(Vl,... ,vt) be such 

that for  every [7 e (B j) ~, ~ ~ ~b[b, d] i f f ~ j  ~ ~*[b];  then for every b' e (B}) t 9.I' 

a] iff 
(ii) i f  for somej  e I and d e (A - U , , I  B~)', B i = [ ~ I~,,~ then Bj = [ 9A' [o,~" 

(iii) i f  ( ~ j , b ) -  (~3},D')and Bj = 1 10,  t h e n B j =  [9.I'l,.~,. 

(iv) suppose a#ain (~3s.,b) - (~3~,b). Let d e ( A  - UI~[ B3 k and let 

~(v~,..., v,, d) and ~*(v~,..., v~, b) be such that 9.I ~ ~b*[O, b] i f f  6 e (Bf f  and 

~ q~Eg, d];  then ~ '  ~ 4~*[e, b'] i f f ee(Bj ) '  and ~ '  ~ c~[e, d]. 

PROOF. 

(i) We enrich the language of 9.I and ~ ' .  9.I x will be the model obtained by 

enriching 9.I and 9~ is the model obtained by enriching 9.['. For every a e A 

- I.J i~ ~Bi let ~ be an individual constant, we define t~ ~t~ = t ~ ' =  a. For every 

i e I we add a unary predicate R i (we assume this is a new predicate) and inter- 

pret Ri as follows: Ry ~ = B i and R ~ ' =  B~. By Ehrenfeucht's criterion it is 

very easy to see that 9.I1 = 9.Ii. Since Bj is definable in ~ there is a sentence 
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X in the enriched language which expresses the fact that r is the testing formula 

of r in ~ j .  Since 921 = 92~, X is true in 921', thus 4)* is the testing formula of  ~b 

in the submodel of 9.I1' whose universe is R~ 1' , but this submodel is ~ .  hence 

(i) is proved. 

(ii) and (iii) are simple corollaries of (i). The proof of (iv) is similar to the 

proof of (i). 

Let 92 ~- ~ .3 ~;  in the rest of this section we shall find sufficient conditions 

for ~) _~ 92 to be an elementary extension of ~ or of ~. 

DErINITON. Let ~) ~ ~ ;  we say that ~ is a simple extension of ~ if there are 

no dl, d 2 e D - B  and b e B  such that dl < b < d2. 

DEFINITION. Let 92 __ ~ ;  we say that ~ is a permissible extension of 

relative to 92 if 9I _ ~3 ~_ ~ and for every d E D -  B 

{ a l a E A - - B ,  and for every b e B  a < b i f f d < b } _ ~ D .  

THEOREM 2.6. Let ~-~92,  and let 7~ be a permissible extension o f ~  rel- 

ative to 92; then ~ .~7~ .,(92. 

PROOF. In order to prove that ~3 ;> 92 it suffices to show that if r Xk, X) 

is any formula, dl , . . ' ,dkeD,  a e A - D  and 92~ r  "",dk, a], then there is 

d e D  such that 92 ~ r ...,dk, d]. Without loss of generality dx, . . . , d ~ D - B  

and dt+~, . . . ,dkeB.  We may further assume that d~ < ... < d ,<  a < dr+l "'" < d r  

Since ~ is a permissible extension of ~ there are b~, b2 c B such that 

d r < b I < a < b2 < d~+l. We may assume dt+l,...,di+lE[bl, b2] and d~+t+ 1, ..-, 

dkr b2]. Let c~*(bDb2,xt+,'",x~+t, x) be such that for every al,...a~, 

beA ,  92~r i f f a l , . . . , a  b be[b~,b2] and 92 ~ r .., d,, 

ax,...., at, dr+,+ ~,..., dk, b]. 
9~ ~ 3 x r bz, d~+ a,-'", dt+~, x) and all the parameters in the formula belong 

to B; since ~3 -<92 there is d e B _  D such that 92~ r b z, dr+ ~,-", dr+t, d-I, 

but then 9.I ~ r d~, d] .  Thus ~3 -< 92, therefore also ~ -< ~3. 

We list some explicit cases when Theorem 2.6 may be applied. 

COROLLARY 2.7. Let ~3-< 92, and let D~ = cony(B, 92). 

D2 = {a l a e A and a <<_ b for some b e B}, 

D~ = { a l a e A  and b <<_ a for some beB} ,  

D~= { a [ a e A  and a < B } ~ B ,  

D~ = [b~, b2] tYB where bl, bz~B.  

Then ~ .< ~ - <  92 for i = 1 , . . . ,5 .  
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COROLLARY 2.8. Let 9.i be a model of T, P ~ SI(T) and 9~ omits P; then there 

is a simple extension of 9~, ~ , such that ~ ~- 9~ and P is realized in f~ . 

PgOOF. Let ~ ~- 9~ and P realized in ~ .  Suppose c e C and ~ ~ P[c]. Let 

be the simple permissible extension of 9~ relative to ~ such that c e B; then clearly, 

9~ -<~,  and P is realized in ~3. 

L~MMA 2.9. Let {9.I~}r and {~}~<~ be such that 9~, E 9~2 and ~r E ~r 

for every ~t < Cz < v and ~r -<9.I~ for every r < v. Let 9~ = Ur and 

= Ur162 then f~ .< 9~. 

PROOF. Let bl , . . . ,bkeB,  a ~ A  and 9~(a[bl,.. . ,bk, a ]. It suffices to see 

that there is some bEB such that 9 ~  qffbl,"-,bk, b]. Let ~ be such that 

bx, " ' ,  bk, a ~Ar Since 9.Ir E 9~ there is a testing formula q~* such that for every 

aD...,ak, ak+l~Ae, 9~[aD'",ak+l] iff 9.I~q~*[a 1, ..., ak+l]. Thus, 

9~ ~ ~ x qS*(b~,..., bk, x) .  Since ~Be -< 9~ there is b ~ B~ such that 9~e ~ ~b*[b~,..., b~, 

hi ,  but then 9~ ~ ~b[b~,.-., b~, b] and the lemma is proved. 

TnEOgEM 2.10. Let ~ -< 9.i and ~ = ~ + ~ + ~2 ,  then 

(i) if ~ is a permissible extension of ~ relative to 9.I and D ~ cony(C, 9~), 

then ~ -< ~ .  

(ii) if ~3 is a permissible extension of ~3~ relative to 9ff and O ~_ (a[ a ~ A 

and a < b for some beB~} then ~ -<~.  

(iii) if ~ is a permissible extension of ~2 relative to 9~ and O ~_ {a ] a ~ A 

and b <= a for some beB2} then ~z  "<~. 

PROOF. (i) Let Et be the submodel of ~ whose universe is cony(C, 92"). It 

suffices to show that ~ < Ca, for if this is so, and ~ satisfies the conditions of 

(i) then ~3 is a permissible extension of ~ relative to ~ and by Theorem 2.6 

-<~) - < ~ .  Let {cr162 be sequences in B, such that c~ < cr __< d~ 

< d~2 for every ~1 < r < v and U ~<~[c~,~,d~] = C. 

For every r < v let ~r and 9~ be the submodels of 9.1[ whose universes are 

[c~,~,dr and rc~,9~,dr respectively. Then ~ = ~3x.~.a~ ~ and 9.I~ = 9~x,~c~a~, 

where ; ~ = c ~ < v o  < de. Since (f. -<9~ it is easy to see that ~-<9. I r  

= U~<,~r and ~ = U ~<~9.Ir thus by Lemma 2.9 ~ -<  ~ .  The proof 

of (ii) and (iii) is analogous. 

3. Selfatlditive models 

We shall deal in this section with a special class of models which will be called 

selfadditive SA. There are two facts that make SA models important: (i)if 9~, 
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are elementarily equivalent SA models, then 9I + ~3 ~ 9.I, ~3. (ii). Roughly speak- 

ing, every saturated model is the sum of SA models. 

LEMMA 3.1. Let 91 = 911 4- ~ 4- 912, and suppose 91~- 911, 912, then 

91 >" 911 + 912. 

PROOF. It suffices to show that for every formula ~)(xl,y, x2) and for every 

a I e A~ where i = 1,2, if there is b e B such that 9~ ~ ~b[al, b, a2] , then there is 

c e A  1 U A  2 such that 91 ~ qb[aDc, a2]. Let qb*(xDy) be the testing formula for 

~(xl ,y ,  a2) in 911. Suppose by way of contradiction there is b e B such that 

91~c~[ax,b, a2] , but there is no c~A1 such that 91~b[al ,  c, a2]; then 

911 ~ "" 3Ydp*(al,Y). Since 91 ~- 911, 91~ " 3Ydp*(al, Y). Thus 91~ dp[al, b, a2] 

A ~ 3ydp*(al,y). We prove that 

91 ~ Vz 3xl 3y(xl < z A Y < z A ~b(xl, Y, a2) /~  '~' ]u  t~*(xl, u)) clef X. 

If  not, then since 912 -K 9~, 912 ~ "~ )~" Thus there is d e A 2 such that 

~I2 ~ Vxl Vy((xl < d A Y < d) -~ ~(~(xl ,  y, a2)A '-" 3u ~b*(xl, u))). 

Since 9I>- 9.I2 the same holds in 91; but this is impossible since ax < d ,  b < d 

and nevertheless 91 ~ ~(al, b, a2)/~ ,-, 3u ~b*(al, u). Let d e A 1 ; we showed that 

91 k 3xl 3y(xl < d A y < d A dp(xl, y, a2) A "~ 3u~b*(xl, Y)); 

since ~b* is the testing formula of ~b(x 1, y, a2) in 911 and d e A 1 this is impossible. 

So there must be some c e A t such that 91 ~ ~b[al, c, a2] , and the lemma is proved. 

THEOREM 3.2. Suppose T has a model containing more than one point, 

then the following conditions are equivalent. 

(i) I f  9.I is a model of T then 91 has no definable convex subset other than 

1911 and 
(ii) There are models of T, 91, and 91' such that 91 4- 91' >- 91, ~ '  and 

~I~_ 91 '. 

(iii) For every ~ ,  ~ ,  if 9.I and ~ are models of T, then 91 4- ~ ~- ~ , ~ .  

PROOF. Clearly (iii) =~ (ii); it is also easy to see that (ii) ~ (i). Suppose that 

(i) holds; we show that (iii) holds. It is easy to see that the models of T have no 

first and last elements. Further, for every ~(xl, . . . ,x,)  the sentence 

(1) 3xl "'" qx. ~b(xt, '",x.) ~ 'r "'" 3x. A= (xi > y) ^ dp(xl,"',x.) 
i 1 

belongs to T. 
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Let 92 and ~3 be models of  T; we assume that A n B = ~ .  Let 

Z = D(gg0UD(~3)U {5 < D l a e A  and b e B } ,  

where D(92) denotes the complete diagram of 92. If  Z is not consistent then there 

is a finite Z o c Z such that D(9.I) u Zo is not consistent. Without loss of  generality 

Zo = {r "", $,), t~ </~t, "", ~ < b,} where a e A and b i e B where i = 1,..., n.  

Since the bt do not occur in D(92), 

t l  

D(92) k-Vxl, "'" Vxn (A (a < xi) -~ ,', r  xn)), 
i = l  

but this contradicts (1). Thus ]~ is consistent. 

Let ~ be a model of~E. We may assume that 92,~3 -<r  Let A = {clc < a 

for some a eA} and/7  = {clb < e for some b eB} .  We may further assume 

that ~ = C ~ + ~ ) + ~ .  By Theorem 2.6 9 ~ -  92 and ~ >- ~3, thus 9~ + ~) + ~ >- 

92 + ~ + ~3 and therefore 92 + ~3 + ~3 >- 92, ~3. By Lemma 3.1 92 + ~ + ~3 >- 92 + ~3 

thus 92 + ~3 ~- 92,~3. Hence (i) :~ (iii) and the theorem is proved. 

DEFINITION. 92 is called selfadditive if (i), (ii), or (iii) of  Theorem 3.2 holds 

for T~. 

COROLLARY 3.3. I f  92 iS SA and co-saturated and P �9 SI(Tn) then (a [ P(a, 9i) 

= P} is unbounded from above and unbounded from below. 

PROOF. Use (1) and the co-saturation of  9/. 

LEMMA 3.4. Let (I, < )  be an ordered set. For every i,j �9 I ,  92, - 92i and 

92, is SA; then for every J c_ I ~,~192i "< ~,,~z92i. 

PROOF. By induction on 111 [[. There is no difficulty in proving the theorem 

when I is finite. Let III II = --> co and suppose the theorem is true for every 

I '  suchthat  I]I'[[ Let J ~ I ,  92 = ]E,~ t 92, and ~ = ~ ,~z  92,. We shall 

show that ~ ~( 92. Let {i, Iv < a} = I be a one-to-one enumeration of  I, 

l , = { i e l r  } and J ~ = I ~ n J ,  and let 92~= ~i~I~92i, ~ ,  = E , ~ j  92, 

then by the induction hypothesis 

9/0 -< 921 .<... < 92, D I O 

] and 920 :>" ~ o ,  921 >" ~ l ,  "", 92, >- ~B, ... 
J 

and since 92 = U ~<~92~ and ~ = U ~ < ~ ,  ~ <92 .  Q.E.D. 

For the next lemma, new notions and notations will be needed. We confine 

our discussion to a fixed but arbitrary typical finite language L. Let L(92) = L 
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and d ~ A k ; the set {r ] 92 ~ r  and d(r < n} is called the n-type of d in 92. 

Let us say that the formulas q~ and ~b are equivalent, r .~ r  iffl--q~ ~ r  Let 

F..k be the set of all formulas r such that the free variables of ~b are among 

{Vo,'",Vk-1} and d(~) < n, then ~ partitions F.,k to a finite number of equiv- 

alence classes. Since F.,k is closed under ^ ,  v and ..,, F..k may be considered 

as a finite Boolean algebra. Let t..k be the number of  atoms in F.,k. For every 

n-type P there is an atom of F.,k, ~b such that for every 92 and every d ~ A k, 

92 ~ P[ft] iff 9.1 ~ ~b[d]. 

We extend our old notation to n-types. If  9/is a model, a e A ,  d e A k, B ~_ A ,  

then P.(d, 92), P.(a, 92), P.(B, 92) respectively denote the n-type of 6, the n-type 

of a ,  and {P.(b, 92)[ b E B}. 

Let P = ( P D ' " , P k )  be a sequence of types. We shall say that (a i , . . . , ak )  

realizes Prelative to 92 if a l  < a2 < ' "  < ak and for every i, 92 ~ P,[aJ .  Let B_c 1 92 ]; 

we shall say that P is realized in B relative to 92 if there is b ~ B ~ such that 6 

realizes /~ relative to 92. 

For every n let t. = t..2, We define two sequences s. and u.: s o = Uo = 0, 

Sn+l = 2" S . ' ( t . . )  s" + 1 

Un+ 1 = Sn+ 1 "~ U n . 

The next lemma is formulated so that it will be easy to prove by induction; 

we shall derive from it several corollaries which will be applicable in diverse 

cases. It is due to these facts that the formulation of Lemma 3.5 is complicated. 

LEMMA 3.5. L e t 9 2 =  E + ~3,92' = ~'  + ~ 3 ' , ~  -= ~3', ~ =-- ~ ' .  Let 
g t 

b x , ' " , b k 6 B ,  b~ , ' " ,bk~B , bi < b2 <' ' "  = < bk, b'l < b~ < ... < b'k, n > 0  

and let the following conditions hold: 

(i) (n, 1): for every i, P,.(b i, 92) = P,.(b[, 92'). 

(ii) (n,2): at least one of the following holds: 

(a) P..(bx, ~ )  = P..(b'~, ~ ' ) .  

(b)  Pu._, (] ~ ,  bl), 92) = Pu._,([ ~ ' ,  b'),  92') 

and for every _Pc (P.._ ,(] ~3, b,), 92)) ~"/~ is realized in 1~, bl) and in ] ~ ' ,  b;) 

relative to 92 and 92' respectively. 

(iii) (n,3) for every i, 1 <= i <  k,  one of the following holds: 

(a) P~.((bl, b~+~>, 92) = P~.((b;, b,'+,>, 92'), 

(b) b, # b~+l, b'~ # b'~+l, 
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P,._ ,((bi, bi+ ,), 92) = P,._ ,((bi', b~'+ ,), 92') and for every ~ e (P,._ ,((b~, b~ + 1), 92))'", 

P is realized in (bi, b~+ O and ff is realized in (hi', b~+ x) relative to 92 and 92' 
respectively. 

! ? t Then P,( (b l ,  "", bk),~3) = P , ( (b l ,  "", bk) ,~  ). 

PROOF. We prove by induction on n that the theorem is true for n and for 

every k. Suppose first that n = 1. It suffices to show that in Ehrenfeucht's game 

with one step for the models (~B, (b~,..., bk)) and ( ~ ' ,  (b] , - . - ,  bk)) the second 

player has a winning strategy. We may assume that player I chooses bo e B.  

Suppose bo < b l .  By either (ii, a) or (ii, b), for n = 1, there exists bg ~ B' such 
? ! 

that Po(bo,~B ) = Po(bo,~) thus (b~, b~, ..., b'k) ~-- (bo, bl , '" ,  bk) as desired. A 

similar argument shows that player II wins also in the cases when bo e (b~, bi+t) 

or b oe(bk] or bo = bi. 

Suppose the theorem is true for n and for every k. Let bt < b2 ~ "'" ~ bk 
and b~ < b~ < ... -< b~ satisfy (n + 1,1), (n + 1, 2) and (n + 1, 3). By Ehren- 

feucht's criterion it suffices to show that in Ehrenfeucht's game with n + 1 steps 

for the models (~ ,  (bx , " ' ,  bk)) and (~', (b~,.. . ,  b~,)) player I[ has a winning 

strategy. By the induction hypothesis, it suffices to show that after the first step 
! 

of the game player II can obtain two k +  1 tuples (bo, hi, "", bk) and (bo, b'l, " ' ,  bk ) 

such that b~ ~ b~, i = 0, 1, . . . ,k ,  is an order isomorphism, and that after the 

two k + 1 tuples are arranged in an increasing order they satisfy (n, 1), (n, 2) 

and (n, 3). 

Without loss of  generality, we may assume that player I chooses bo e B.  

Suppose bo < bt and (n + 1, 2)(a) holds, Let P = P..((bo, bt), ~ ) .  Let 

IP(vo, vi) be an atom of F.,2 which generates P .  Since u.+l --- Un + 1, 

3Vo~(Vo, vl) e e, .+ ~(bl,~ ) = P,.+ l (b i ,~ ' ) .  

Let b ~ b e s u c h t h a t ~ ' ~  ~bEbo, b'l]; hence b~ is as desired. Suppose bo < bi but 

now (n + 1, 2)(b) holds. We distinguish between three cases. 

Case I. There is P e(e.._1([~, bl), 92))s. which is not realized in (bo, b 1). It 
, p , , , is easy to see that there is bo e A' such that . .((bo, bl) ,  92 ) = P..((bo, bl), 92). 

Let ~b(Vo, vt) have the following meaning: Vo < vi and P is not realized in (Vo, v 0 .  

A direct computation shows that d(~) =< s. + Un-1 = U., hence ~k ~P..((bo, bt),92), 
hence ~b ~Pu.((b'o, b'l), 92'),hence _P is not realized in (b~, b~) relative to 92'; 

thus b ~ B ' .  Let Oe(P.._l(l~3,bl),92)) '~ and let Qo = P,,(b, 9.D; then the 

length of Q'-'(Qo)'-'/~ is less than or equal to s ,+l .  By (n + 1, 2)(b) 0"- '(Qo)'-"/~ 
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is realized in 12, bl) and in 12 ' ,  b~), but (Qo)'-"/~ is neither realized in [bo, bl) 

nor in [b~, b~), thus O is realized both in 12, bo) and]2', b~,) and thus the k + 1 

tuples (bo, "", bk) and (b~, ..., b;,) satisfy (n, 1), (n, 2) and (n, 3). 

Case II. Suppose there exists fie(P,,,_ ,(12, bl), 9.I)) *" which is not realized in 

12,bo). Since 2 '  --- 2 there is b ~ B '  such that Pu.(b~,2') = Pu.(bo, 2 ) .  
Suppose that P is realized in 12 ' ,  bo). Let P =  (P1, "", Ps.) ,  C' <x ]  < -.. <x~. < b~ 

and for every i, 9~' ~ Pi[x~]. Since Pu.(bo, 2 )  = P,.(b'o, 2 ' )  and since the sequence 

u, increases rapidly enough, there are xl, ..., xs. such that C < xl < x2"" < xs, < bo 

and such that for every i, Pu._, ( x i , 2 ) = P , . _ ,  (x~, 2 ' ) .  By Theorem 2.1(iii) for 

every i, (9i, xi)"~ ' (9I ' ,  x'i). However this contradicts the fact that /~ is not  

realized in 12,  bo), hence _P is not realized in ]2 ' ,  b~). By an argument similar 

to that used in Case I, we conclude that if 0 ~ (P, ._ ~(I 2 ,  bo), 9.I)) ~" then 0 is 

realized in both (bo, bl) and (bo, bl'). It is easy to see that ( bo , ' " , bk )  and 

(b~,. . . ,  b~,) satisfy (n, 1), (n, 2) and (n, 3) as desired. 

Case III. Suppose that every/~ ~ (Pu._ ~([ 2 ,  bl), 9.I)) '" is realized in both [2 ,  bo) 

and (bo, bt).  Let Po =P, .(bo,  9/); let Q be the concatenation of all the sequences in 

(P,._ ~(12, ba), 9~t))~": then the length of o "-'(Po)'-'O is at most 2 �9 s,(t,.) ~" + 1 =s ,+ 1. 

Let g "- ' (b~) ' - '9  realize ~ "-'(Po) "-'Q in 12' ,  b'l) where b~ realizes the Po in the 

middle. The sequences (bo, "-, bk) and (bd,-.-,  bk) satisfy (n, 1) (n, 2) and (n, 3) 
as desired. 

The cases when the first player chooses some b E (b~, bi+a) are analogous to 

the cases already considered. The case where b > bk or b = b~ for some i is 
trivial, hence the lemma is proved. 

The following corollaries hold for models in finite or in infinite languages. 

COROLLARY 3.6. I f  9~ = ~ + 2 ,  bl, b2eB,  P(bl,9~)= P(b2,9~) and for 
every n, P,(I 2 ,  bt), 9~) = P,(I 2 ,  b2), 9~) and for every k, n and P ~ (P,(I 2 ,  b~), 93D) k, 

is realized both in 12, bl) and 12, b2) relative to 9~, then P(bl ,2)  -- P(b2,2) .  

PROOF. This is almost a special case of Lemma 3.5. 

COROLLARY 3.7. Ifg~ = ~ + 2 ,  bl, b2 e B, P(bl,  92) = P(b2, 2D, P(12, bx), 92) 

= P(12,  b2), 9.1] and for every k and P e (P( [2 ,  bx), 9~)) k, ~ is realized both in 
[2, bl) and ] 2 ,  b2), then P(b D 2)  = P(b2,2). 

PROOF. By Corollary 3.6. 

COROLLARY 3.8. I f 2  C 9.~ and 2 is SA, hi, [J2 e B~ and P(bl,  92") -- P(bz, 9~), 
then P ( b l , 2  ) = P (b2 ,2  ). 
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PROOF. Let 9A = 921 + ~ + 9~z. Then ha,/;2 and the decomposition 

9A = 911 + (~B + 922) fulfill the conditions of  Lemma 3.5; hence P (bx ,~  + 9.Iz) 

= P (b2 ,~  + 922). Applying again Lemma 3.5, now to the decomposition of  

93 + 9.I2 into ~ and 9A2, we conclude that P ( b l , ~ )  = P(b2,~3). 

COROLLARY 3.9. I f  a 1 < bl and a 2 < b2,  P(al, 92) = P(a2,  ~r), P(bl, 92) 

= P(b2, 9.I), P((al, bl) , 9.[) = P((a2, b2), 9_I) and for every n and P c  (P((a D bt) , 9~)) n 

ff  is realized both in (a 1, bl) and (a2, b2), then P((a 1, bl ) ,  9~) = P((a2, b2), 9.0. 

PROOF. This is a simpler version of Lemma 3.5. However it can be inferred 

from Lemma 3.5 as follows. Let ~ contain a single element, let 92' = ~ + 92. 

Apply Lemma 3.5 to the decomposition of  92' into ~ and 92, and conclude that 

P((al ,  bt ) ,  ~)  = P((a2, b2), 9.I). 

Corollary 3.9 has the shortcoming that it does not give any information about 

P((ai, bi), 92) when there is P c  (P((al, bl), 92)) ~ which is not realized in (at, b l ) .  

Theorem 3.10 is a strengthening of Corollary 3.9 which overcomes this short- 

coming. 

THEOREM 3.10. There are numbers S'n,U'~ such that if ai, b~eA~, a i < b i ,  

i= I, 2, and Pu,.(ai, 921)--Pu,.(a2, 9~2), P~,.(bl, 921) = Pu'n(b2,922) and for every 
Stn Pe(P,,n((ax,b1),921) ) , P is realized in (a~,bx) i f f  P is realized in (a2, b2) , 

then Pn((ax, bi) ,  9~1) = P,((a2, b2), 9~2). 

We shall not give here the proof  of  the theorem, since it has no application 

in this paper. Theorem 3.10 can be further strengthened by replacing the ele- 

ments a 1, bl, a2, b2 by cuts. Here a cut is meant to be a subset L o f  1 921 such that 

if a e L then I a] _~ L. The type of  L is the set of all sentences in a language con- 

taining an additional unary predicate P which are true in (92, L), where L is the 

interpretation of  P in (92, L). 

4. Kernels and saturated models 

It will be useful to mention at this point some known facts about the order 

topology. We shall say that an ordered set (X,  < )  is complete if whenever 

L U R = X and L < R then either L has a maximum or R has a minimum. 

THEOREM 4.1. Let (X ,  <~ be an ordered set; then the following conditions 

are equivalent: 

(i) X (with its order topolo#y) is compact. 

(ii) (X,  <~  is complete. 
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(iii) Every subset of X has a supremum and an infimum. 

Let (X, < > be an ordered set; for every i ~ co let Li, Ri be such that L~ u Ri = X 

and L~ < R~. Then (L~, R~>~ E,~ is called a separating sequence for X,  if for every 

x < y there is i such that x e L~ and y e Ri. It is easy to see that X has a countable 

basis of open sets iff X has a separating sequence. 

The following theorem is well known. 

TEOREM 4.2. I f  L(T) contains no unary predicates and the models of  T 

are densely ordered, if  y > co and 9~ is a y-saturated model of T with cardinality 

o~, then ~ >= yL. 

LEMMA 4.3. I f  9.I1, "", 9In are y-saturated then so is E]=l 9~,. 

PROOF. Let 9/ = E ~=1 " ~ .  Let P be a type over a set of cardinality less than 

7. Since P is finitely satisfiable in 92, there is io such that P is finitely satisfiable 

in A~o. Let P* consist of the testing formulas of the formulas of P in the convex 

submodel 9i~o. Since P* is finitely satisfiable in 92~o and ~ o  is y-saturated, there 

is a e A~o such that 92~o r P*[a] ;  but then 92 ~ P[a]. Hence 92 is y-saturated. 

THEOREM 4.4. I f  y is singular and 9I is y-saturated then 92 is y+-saturated. 

PROOF. It suffices to show that every type over a set ofcardinality y is supported 

by a type over a set of cardinality less than 7. Let P be a type over a set 

B _~ A, ][ B [1 = 7. Without loss of generality, P is a complete type over B. I f  

P ~ Vo = b for some b ~ B there is nothing to prove. Suppose this is not the case ; 

l e t L = { b [ b < v  oeP}  and R = { b ] v  o < b E P } .  Let L ' c_  L b e  such that for 

every b E L there is b' >__ b in L '  and I] L' [] < 7;let  R'  _~ R be such that for every 

b e R there is b' __< b in R'  and ][ R'  [] < 7. This choice is possible since [l R [[, 

]1L I[ __< y and y is singular. For every ~b~P we define ~b* as follows: let bl eL '  

a n d b l  => b f o r e v e r y b e L w h i c h i s a  parameter of ~b; let b2~R'  and b2 =< b 

for every b E R which is parameter of ~b; let q~*(b i, b2, Vo) be the testing formula 

of 4~ in the convex subset [bl, b2], that is, 92 ~ 4~*[bl, b2, b] iff b e [bl, b2] and 

92 ~ qS[b]. Note that since P is complete b: and b2 are the only parameters of 

q~*. Let P* = {qS* I q~ e P}" If  ~3 ~ P*[a] for some ~ ~ 92 then ~3 ~ P[a ] .  Thus 

P* supports P,  and the theorem is proved. 

THnOREM 4.5. Let y > co and (I ,  < )  be a linearly ordered set with the 

following property: if  I : , I2 c_ I ,  I~ < I2, and [] I~ 1[, II II < y then there is 

an i e I  such that I~ <-_ i < 12. For every i e I  let 9.1~ be SA and y-saturated, 

and 92~ - 92~ for every i and j;  then Z , ~ f  9.I~ is y-saturated. 

PROOF. Let 92 = ~ E r g i ~ .  Let P be a complete type over B _ c A  and 
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Ilnll < ~  Let L- -  _ vo e) and R = {blv o < b~P} .  We define subsets 

o f I , I  x = {ilA, N L ~ ~ }  a n d I  2 = {ilA , O R  ~ ~:~} andlet J = { i l t l  <= i < I5}. 
Clearly, J # ~ .  Let ~ = ~ s, z 9As. Since P is finitely satisfiable in C, we may 

assume as in Theorem 4.4 that the set of parameters of P, B is a subset of C.  

So since ~ .< 9A and B _~ C it suffices to show that ~ k P[c] for some c ~ C. 

Without loss of generality, J has a first and a last element, thus ~ = 9A~ + ~t  + 9~k 

where t, k E J .  Since P is finitely satisfiable in ~ ,  either P is finitely satisfiable 

in A s or in C 1 or in A k . Suppose P is finitely satisfiable in As; then for every ~b EP 

let ~b* be the testing formula of ~b in the submodel 93[ s, let P* = {~b* [ q~ ~ P}. 

9.It is s-saturated; P* has fewer than 7 parameters and is finitely satisfiable in 9~ 

so there is an a eAt such that 9~ l k P*[a] so ~ k P[a]. The same argument is 

applied if P is finitely satisfiable in 9~,. 

Suppose P is finitely satisfiable in ~ t .  For every ~b e P let ~b* be the testing 

formula for ~ in the submodel ~ .  Let P* = {~b*lq~ ~P}.  Since BN C t = ~Z;, 

P* has no parameters. Let {i~}~<~ be a one-to-one function from ~ onto J -  {k, l}. 

Let J ,  = {i~[r/< v} and ~ = ~E~I ~ i. Then it is easy to see by induction 

that ~3, is og-saturated for every v. U ,<~3~ = Ct and { ~),}~<e is an elementary 

chain, so r is o~-saturated. P* is finitely satisfiable in ~1, so there is a c e C~ 

such that ff~ k P*[c],  and thus 9.I k P[c]. The theorem is proved. 

Let T be a complete theory. Let F ~_ F~(T) be the Boolean algebra generated 

by the set of all formulas ~b(%) in F~(T) which define convex sets in every model 

of  T. Let ~-r  be the set of ultrafilters of F .  We call the elements of ~ ' r  convex 

types. Let 9~beamode lo fT .  We define ~Y'~ =  l lol and 1 1o ~ ~ )  

We call the elements of ~"n kernels in 9~. It is easy to sez that every ele:nznt of 

:r is convex. 

o,Y'~a is a partition of 9.I which consists of convex subsets: it is linearly ordered 

by the partial order defined on the subsets of an ordered set in the introduction. 

Hence we shall always regard JY'~t as a linearly ordered set. When JY'a is referred 

to as a topological space, it will be always understood that af'ga is taken with its 

order topology. If  9~ is an o~-saturated model of T then the order on ~,Y'n induces 

an order on ~ ' r ,  that is, ~ < W iff[ 9J]~, <l l. Clearly this order is independent 

of  the choice of 9~. So, again we regard ~ r  as an ordered set. When ~ ' r  is con- 

sidered as a topological space, the topology is understood to be the order topology. 

Let 9.I be a model of T, and a e A. Let T '  = T(~,~); then the elements of  ~-r '  

will be called convex types over a .  We denote ~(~,~) by ~rd,  and call the ele- 
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ments of ~('~ kernels over a .  When there is no risk of confusion, we abbreviate 

and write j~r, instead of  ~ .  It is inessential to our discussion whether we 

regard (9/, a) as a model with an additional individual constant 8, or whether 

we regard it as a model with an additional unary predicate P ,  such that P~ = {a}. 

We may assume that always ~ '~  = ~ t ,  where L (9/') consists of  one binary 

predicate and unary predicates only. Thus whatever is proved for kernels in 

every typical language applies also to kernels over a .  

Let 9 / b e  a model, a c A ,  and KEJ~'~ (K~J~'~).  We say that K is definable 

(over a) from below if {b [ b ~- A and, b > K or b ~ K} is definable (over a). Defin- 

ability from above is defined similarly. We list some elementary properties. 

LEMMA 4.6. Let 9/ be co-saturated, and K ~ :;~r . Then 

(i) K has a successor in ~ t  iff K is definable from above; 

K is a successor in J f~  iff K is definable from below; 

K is isolated in a~r~ if/" K is definable in 9/. 

(ii) ~ t  has a separating sequence. 

(iii) ~"~ is complete. 

(iv) Similar results hold for .~r~l. 

The proofs are straightforward. 

LEMM~, 4.7. Let 9/ - ~ ;  9/ and ~ are co-saturated and r ~_ FI(T~) is 

finitely satisfiable. Then 9/~ - ~ .  

PROOF. By Ehrenfeucht's criterion the proof is trivial. 

LEMMA 4.8. (i) Let 9/ be an co-saturated model of T and ~ ' r .  Then 

either 9/~ consists of a single element b and b is definable in 9/, or 9~ is SA. 

(ii) I f  a c A  then a similar result holds for kernels over a. 

PROOF. (i) By Lemma 4.7 we may assume that 9/ is also co-homogeneous. 

Let q~(vl) be a formula; there is an a ~ [ 9/]~, such that 9/~ ~ [a ] .  Then for every 

c ~ [ 9/]0 there is a b such that c < b E ] 9/1r and 9/~ ~b[b]. If  not, then (since 

9/ is  co-saturated) there must be some ~(Vo) ~ �9 such that for no b ~ [ 9/]~, c < b 

and 9/~ ~b[b]. Let /,(Vo) = 3X(Vo < XA~p(X)A~b(x)); then 19/1  is convex and 

I 1o 19/1o , , But then (I) is not a convex type, and this is a contra- 

diction. Hence for every c e [ 9/[~ there is b such that c < b ~ [ 9/[~, and 9/~ q~[b]. 

Let P ~ S~(T) and suppose P is realized in [ 9 / [ . .  Let c ~ 19/]| by the preceding 

argument, {c < Vo}toP is finitely satisfiable and, since 9/ is co-saturated, 

{c < vo} to P is satisfiable. Thus if P e S~(T) is realized in ] 9/1~, then for every 
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c~1921| in  1921| Leta ,  b~192[|174 be such that 

a '  > b and P(a', 92) = P(a, 9~). Since 92 is to-homogeneous there is an auto- 

m o r p h i s m f o f  92 such tha t f (a)  = a ' .  Clear lyf  f 9~  is an automorphism of 9~ .  

Thus for every a, b E [ 9~ 1| there is a '  > b and an automorphism f of  92| such 

tha t f (a )  = a ' .  This implies that there are no convex definable subsets of l92 I| 
other than 192 1| and ~ .  So we conclude that either 9~| is SA or 192 ]| consists 

of  a single element; in the latter case, since 92 is to-saturated, it is obvious that 

this element must be definable. 

To prove (ii) we have only to remark that if 92 is to-saturated, then so is (92, a). 

LEMMA 4.9. Let 92 be a y-saturated model of T, and ~ 6 ~ r ;  then 9~  is 

y-saturated. The same is true when t~ is a convex type over some a c A .  

PROOF. If  I 92 I| contains a single point then there is nothing to prove. Other- 

wise, let B _~ 1 92 l| and [I B II < y, let P be a complete type over B in 92| Let 

G ~- 92| Co ~ C, and G ~ P[col .  Let 92' be the model obtained by replacing 

92| by G in 9~. 

Clearly 9~ '~  92 and 9~g = ~ .  Since 92 is y-saturated and II B I1 < y there is 

an a ~ A which realizes in 92 the same complete type over B as Co does. Clearly 

a  1921| By Lemma 4.8 92| is SA, thus ~ is SA. By Corollary 3.8, a realizes in 

the same complete type over B as Co does. Hence G ~ P[al whence 9~  ~ P[al,  

and we conclude that 92| is y-saturated. 

LEMMA 4.10. I f  92| is SA and every q~ ~ �9 defines over a a convex set and 

a 1921| then 

PROOF. If  [92 ]| ~ JY'~ then there is x(a, v0) which defines over a a convex 

set such that ] 92f ]| ~ 1 9.[ [| ~ ~ .  If  X* is the testing formula of Z in 9~.~, 

then X* is without parameters, 192| is convex, and [ 921| I 
This contradicts the fact that 92|176 is SA. Thus ]92 I| ~ ~r and the lemma is 

proved. 

THEOREM 4.11. Let T have an infinite model, and let y > to be regular; 

then T has a y-saturated model of cardinality o~ iff  ~ > yL. 

PROOF. Let 92 be a y-saturated model. We define an equivalence relation on 

A: a --~ b iff I'a, b] is finite. Let A* be the set of  equivalence classes. If  a*, b* e A* 

we say that a* < b* if, for every a ~ a* and b ~ b*, a < b. Clearly < linearly 

orders A*. Let 92* = (A*, < ) ;  it is easy to see that 92* is densely ordered and 

y-saturated. By Theorem 4.2, II A* II --> hence II a II -> 
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Let 0t > y~ Since y is regular (yL)L= yL. So, by [5], T has a y-saturated 

model of cardinality )'J, say ~3. By Lemmas 4.8 and 4.9 there is ~ s ~ such 

that E is SA and ),-saturated. By Theorem 4.5, ~ .  ( ~ +  1, < > is again y-saturated. 

Suppose ~ = ~1 + E + ~ 3 2 ,  and let ~3" - -~ i  where i = 1,2 and ~ ; a r e  y-sat- 

urated models of cardinality )'L. Let ~B'=~l '  + E" (~ + 1, <> + ~3~; then ob- 

viously ~3' -- ~ ,  I[ ~ '  II =c~, and by Lemma 4.3, ~3' is y-saturated. If ~3 = ~31 + E 

or~3 = E + ~ 2 w e d e f i n e ~ '  similarly. I f ~  = ~ then E ' ( ~ + I , < >  is the 

desired y-saturated model. Q.E.D. 

COROLLARY 4.12. I f  y is singular and T has infinite models then T has a 

y-saturated model of cardinality ~ if/" ~ >__ 2L 

PROOF. Combine Theorems 4.4 and 4.11. 

LEMMA 4.13. I f  91 is an co-saturated model of T, and for every �9 ~O~r, 

91~ is y-saturated, then 91 is )'-saturated. 

PROOF. Let B _  A, II B II < y, and P a complete type over B. Let �9 1 = 

sup{~ ] �9 e o~ r and there is a b �9 1 92 I~' such thatb < Vo e P} where the supremum 

is taken in o~- r .  Let ~2 = inf{ l e   and there is a b 1911, such that 

Vo = b � 9  Let C = I . J . ,< .< .~]91] . .  Then P is finitely satisfiable either in 

C or in [N[~, or 1911.~. Suppose P is finitely satisfiable in I 1o,. For every 

4) e P ,  let q~* be the testing formula of q~ in 91| and let P* = {4)* [ 4) �9 P}. Then 

P* is finitely satisfiable in 91.,. Since 91., is y-saturated, there is an a �9 [ 9.I1~, 

such that 9~, ~ P*[a], hence 91 g P[a]. The same argument is applied when P is 

finitely satisfiable in I~1o= Suppose P is not finitely satisfiable in [N] . ,  k9 [ N [ ~ .  

We show that there is ~b(Vo) such that [ 92[ I* c C and P is finitely satisfiable in ] 92 1,. 

Let C = U ~ ,  ] 911,,, where for every i] 911~, is convex. Suppose that, for no i, 

P is finitely satisfiable in [92 1,, and let Po -~ P be finite. Then for every i, Po 

is satisfiable in ] N[~o,. Since N is co-saturated Po u {,~ ~b, ]i ~ co} is satisfiable 

in 91, that is, Po is satisfiable in A - C. Thus P is finitely satisfiable in ] N 1., ~ 1921.~ 

which is a contradiction. So there is some i such that P is finitely satisfiable 

in [9i],, .  For every ~b~P, let ~b*(Vo) be such that 91 ~ 4~*[a] i f f a ~  ] 91[~, and 

91 ~ qS[a]. Let P* = {q~*]ffee}.  Since C contains no parameters of P ,  

P* is a pure type (that is, without parameters). Since 91 is co-saturated there is 

an a � 9  such that 91 ~ P*[a ] ,  but then 91 ~ P[a]. Thus 91 is )'-saturated. 

THEOREM 4.14. Let {91~lv < ~t} be a set of y-saturated infinite models of 

T such that for every v, II 91 11 = ~. Then there is 91 such that II 9111 = or, 

92 is ~-saturated, and for every v < ~, 92~-< 92. 
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ProoF. For every @ e ~ ' r  we define 9/~. If]  9/~ consists of  a single element 

then 9/*) = 9/0; if not, then 92a,= ~ ~-<, 9 /~ .  Let 92 = ~ a, ~Tg/*); then it 

is easy to see that [[ 9 / I I - - ~ ,  that for every v, 9/>- 9/", for every (I)e ~ ' r ,  

9/a,--- 9/~, and that 9/*) is ~-saturated. 

We shall show that 92 is co-saturated. Let P be a complete type over d; without 

loss of  generality, d = (a  l, a2) and al < Vo < a2 e P- Suppose there is @ e~,~'r 

such that a~,az el  921.)" For every q~ ~ P let ~b* be the testing formula of  ~b in 

9/~ and P* = {q~* [tk ~ P}. P* is finitely satisfiable in 9/*) and 92,) is v-saturated, 

thus 9/*) ~ P*[a]  for some a r 19/1o, and hence 9/~ P[a]. Suppose al and az 

belong to distinct kernels. Let ~k be such that 92 = 9/~ + 9/~~, and ai ~]92 [~,, 

a ,  ~ 19/[~,;then P is finitely satisfiable either in 19/1  or in 1 9/1~,. Without loss 

of  generality, P is finitely satisfiable in l g/b. For every ~b(a l, a2, v0)~ P let 

q~*(al,vo) be such that 9 /~b * [a~ , a ]  iff a 19/[, and 92~ qb[al, a2, a]. Let 

P* = {q~*lq~eP}; then P* is a type over al in 9/. Let 19/*l a . Since 9/" 

is o~-saturated and 92" <91 there is an a ~ 19/ 1 such that 9/*~P*[a] ,  and thus 

92 ~ P[a]. Hence 9/ is  w-saturated. By Lemma 4.13, 92 is v-saturated, hence 92 

is as desired. Q.E.D. 

5. Theories T with finite SI(T) 

The discussion in this section is confined to an arbitrary but fixed finite language 

L. 9 / and  T thus will denote a model and a theory in this language. 

DEFXNITION. Let 92 be SA and a 6 A. Let C~ be the union of all the convex 

and bounded subsets of A which contain a and are definable over a .  ~,~ will 

denote the submodel of  9/having C~t as its universe. We omit the subscript 9/ 

in C~ and ~ when there is no risk of  confusion. We call both COx and ~,~ the 

component of a in 92. In the Lemma 5.1 it will be convenient to use the following 

notation: 

( ~  = C~t ~ [a [, and _C d = C~ N [a] .  

Let 92 be SA; then for every a, b c A  either Ca O C b = f25 or L~mma 5.1. 

C a = C b. 

PROOF. (i). I f  b e C a then tTb~ C a n  [b I. If  not, let ~(X, Vo) be such that 

1 921~,a is convex bounded with minimum a,  and such that there is a d ~ 1 921~.o 

such that d > C b. By Corollary 2.4 there is a testing formula ~b*(x, Vo) such that 

1921 ,.  = 19/l ., Ebl 
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hence d ~ [ 92 [~.,b - C b, contrary to the choice of d.  Thus (7 b ~ • " n  [b t" 

(ii) If  b ~ C "  then cb_c C"C~ [b I. Suppose (ii) is not true. Let ok(x, Vo) 

be such that a ,b~]9.I]~~ _~ C" and 92~,~ C 92. Since C b = C " n  [b[ there is 
, 

~k(X, Vo) such that be192[~,b =< C b and 1921- C ~  �9 

We may assume that for every c e A, 192 ]~,,c is convex, bounded, and has c 

as its minimum. Let g(x, Vo) = r Vo) v 3y(q~(x, y) A g,(y, Vo)). ] 92 ]~,. is convex, 

min(192 [x,.) = a ,  and 1921 ~ c"- Thus 1921 ,~ = [ a ] ,  and therefore 92~ 

Vy(y > a ---> z(a, y)). We define P = {..~ ~k(d, Vo) [ d ~ 1 92 I~,.} u {Vo > a}. Since 

192[ ]0,c is bounded from above for every c ~ A, P is finitely satisfiable in 9.I, So 

there is ~B such that ~[ + ~ >- 92 and 92 + ~3 ~ P[c] for some c ~ B. But then 

92 + ~3 ~ a < c ^ Vy(q~(a, y) ~ .~ ~k(y, c)), since [ 92 [~,. is bounded 92 + ~ 

,-~ ~b [a, c]. Hence 92 + ~ ~ a < c ^ ~ z(a, c) and therefore 92 ~ 3y(a < y ^ ~ z(a,y)), 

We arrive at a contradiction. Thus (ii) is true. 

(iii) I f b ~ C " t h e n  a ~ C  b. We may assume that C. is bounded from above. 

Suppose by way of contradiction b ~ C" but a r _C b. Let ~p(x, vo) be such that 

[ 921~,. is bounded and convex with minimum a and 1 9.I1~,.9 b.  We may assume 

that ] 92 I*,c is bounded convex with minimum c for every c ~ A. Then for every 

d ~ A  there exists c < d such that 92 ~ c~[c,b]. Otherwise, let Z = x > vo A 

3y(y < VoA ~p(y,x)). Then [921~,b is convex bounded with maximum b and 

contains a; thus [ 92 [z,b ~ Cb and this is a contradiction. Thus 9~ ~ Vy ]z(z < y ^ 

~p(z,b)). Since 92 is SA and ~ is bounded there is b ' >  C a such that 

92 ~ Vy ~ z(z < yA~p(z, b')). Hence there is a '  < a such that 92 ~ ~b ['a', b']. 

Thus C "" ~ [ 92 [q~,~, ~ (7" which contradicts (i), and (iii) is proved. 

If  we interchange ~ with C_ in (i), (ii), (iii), clearly we obtain true statements. 

It is now easy to deduce that if Ca n C  b ~  ;~ then C " =  C b. Q.E.D. 

LEMMA 5.2. Let 92 be SA, {~ } i ~  be distinct components in 92 and for 

every i e I ,  ~ -<~" ' .Le t92 '  be the submodel of 92 having ( A -  U i~tC ~') 

u ( U  i ~c i )  as its universe; then for every i ~ I ,  C i is a component in 9.I'. 

PROOF. 92' -< 92, thus if a ~ A' then [ 92 [#,. is convex and bounded ifr[ [,., 
is convex and bounded. It now follows easily that C~ is a component in 92'. We 

skip the easy proof  of the following lemma. 

LEMMA 5.3. Let 92 and f~ be SA. Then 

(i) if f is an isomorphism from 92 onto ~B then for every a e A ,  

f(C~) = Cs (~ . 

(ii) if 92 .<~ and a c A  then ff_~-< ~ .  
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(iii) i f  d ~ A n, b c B n, (9/, d) - (~ ,  b), and the elements of d are all in the 

same component C, then the elements of b are all in the same component, say 

3 ,  and (C, a) - ( 3 ,  b).  

LEMMA 5.4. Let 9/ be SA, Tn = T, SI(T)  be finite; then: 

(i) i f  C is a coponent in 9/, then l] S,(T~)II ---- II SI(T)[I 
(ii) exactly one of the following alternatives holds: (a) For every a c A ,  

C~ 9/. (b) For every a c A ,  C Q is definable over a. There is no first or last 

component. I f  C a' < C ~ and P c SI(T)  then there is a c A  such that P(a, 9/) = P 

and C "  < C ~ < C a2. 

PROOF. By Lemma 5.3(iii), (i) is easy. 

(ii). I f  C ~ = A for some a c A  then (a) holds. It  is easily seen that  for  any 

if P ( b , ~ )  is isolated in SI(T~) and C~ is definable over b, then Cg is definable 

over every element o f  C~. Suppose C ~ ~ A and C a is not  definable over a for  

some a c A ;  then clearly C a is not  definable over any o f  its members.  We first 

show tha t  C Q -< 9/. It suffices to show that  for  every b E C ~ and for every ~b, if 

9/~ 3x q~(b, x) then there is c c C a such that  9/~ q~[b, c] .  Suppose this is not  true. 

We may assume that 9/~ q~[b, d], d > C ~ and for no c e C a, 9/~ ~b[b,c]; then 

clearly C b is definable over b.  Let  a generate P(b, 9/); then 

x(b, Vo) - Vo < b ^ Vy((ct(y) ^3z(q~(y, z) ^ z < b)) ~ (y < Vo) ) 

defines C b over b so C b is definable over b and this is a contradiction.  We conclude 

that  C a -< 9/. Since S I (T)  is finite, P(C a, 9/) = SI (T) ,  by Lemma 5.3(iii), for  

every componen t  of  9/, C, C = C a; hence 9/ is  the sum of  elementarily equivalent 

SA models, hence 9 / ~  C for every component  C of  9/. We showed that  if for  

some a c A ,  C a is not  definable over a then (a) holds. 

Suppose that  for  every a c A,  C" r A and C a is definable over a .  Suppose 

C" < C b and there is P c SI(T)  which is realized by no element c such that  C a 

< c < C b. Let  ~k(b, vo) define C_ b and q~(a, %) define C a . Let  a generate P 

and fl generate P(b, 9/). Let  x(a, vo)=-a < Vo^3X(V o < X A f l (x )^Vy( (a  ~_ 

y < x ^ ~ ~b(x, y) ^ ~ ~b(a, y)) ~ ~ a(y))); then 1 9/Ix,a = {c [ c c [a,  b ' ]  for  some b' 

such that  P(b',  9I) = P(b, 9/) and there is no element between C a and C_ b' real- 

C a which is impossible. izing P} .  So 19/l ,a is convex and bounded and 19/1 ,o 
I t  remains to show that there is no first or last component  in 9/. I f  C ~ is the last 

component  in 9 / t h e n  it is definable in 9/, so C Q = A,  in contradict ion to ou r  

assumption.  Thus ii(b) holds. Q.E.D.  
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L~MMA 5.5. I f  92 is SA, 92 = ff.~' for  some a' c A ,  and Sl(Ta) is finite 

then for  every a ~ A ,  if P = P(a, 92) then: 

(i) there is b > a such that b realizes P ,  P([a,b], 9.I)= SI(T~) and for 

every c ~ (a, b) which realizes P either P([a, c], 92) ~ SI(Tn) or P([c, b], 92) 

Sl(T~). 
(ii) there is b < a with similar properties. 

PROOF. (i). Suppose by way of contradiction there is no such b. Let bo > a 

be such that P([a, bo], 92) = SI(Tn) and P(bo, 92) = P.  By our assumption there 

is bl which realizes P such that a < bl < bo and 

P([a, bl], 92) = P([bl,  bo], 9 )  = SI(T~). 

We continue this construction as follows: 

P(Ea, b,+ 1], 92) = P(Eb,+ 1, bJ, 92) = SI(T, )  

for every i ~ o .  Let 1921r.a be convex and bounded 192[r,o~ bo. Let b realize n 

and b > [ 92 [z.a. Hence b > bo. By Corollary 3.9, P((a,  bo), 92) = P((a,  b),  92). 

But this is impossible since 92 ~ z[a, bo] but 92 ~ ,~ z[a, b]. Thus the lemma 

is proved. 

L~MMA 5.6. Let SI(T~a) be finite, b 1 < b 2 < b a be elements of A ,  

P(bt,92) = P(b2,92) = P,  and P([bl, ba], 92) = Sl(T~t). Then either 

P([bl, b2], 92) = SI(T~) or P([b2, ba], 92) = SI(T~a). 

PROOF. For i=  1, 2 let D,= U {lb, d] I hi < d and P([bi, d], 92) # SI(T,a)}. 

Clearly since SI(Tn) is finite then P(D1, 92) = P(D2, 92) # SI(T,n). If  the lemma 

is not true then [b~, b,+l] _ D, for i = 1, 2, thus P( [b l ,  b3], 92) c-P(Dt u D2, 92) 

# SI(Tn) in contradiction to our assumption on [bl, b3]. Hence the lemma is 

true. 

LEMMA 5.7. Let 92 be a model in any lan#uage. I f  P(d, 92)=P(b, 92) and 

d~(I  92 Ir ~, then b e (] 921~,~) n and (92~,a, ti) - (92r b). 

PROOF. Trivial. 

DEFINTION 5.8. We define inductively the class of models SP~. ~V' o is the 

class of all models in the language L containing a single element. 92e ~ i + l  iff 

one of the following conditions holds: 

(i) 92 ~ 921 + 922 and 921,922 e ~ i .  

(ii) 92 -~ X~ ~ j92j, for every j e J 9~j ed,~,, for every Jl,J2 E J ,  92j, _~ 92i2, 
< J , < >  = Z.  
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(iii) 92 ~_ Z j~s92 i ,  for every j ~ J ,  92j~SP 6 there are Jl,'",Jr such that 

for every j r J ,  92j = 92Jk. For some k, (J ,  < )  = G,  and for every k, 1 < k < r, 

{J192J = 92Jk} is dense in (J ,  < ) .  

(iv) 9/[ ~6ai. 

Let 50 = (.J ~,~ 5ei. 

THEOREM 5.9. Let 92 be a model in the language L; then SI(Ta) is finite if 

and only if 92 e 5~ 

PROOF. We leave it to the reader to prove that, if 9.I eSa then SI(T,a) is finite. 

We show that if II S,(T )II = n then 92 ~ 6e2,_1. It is easy to see that this is 

true for n = 1. Suppose [1St(T,n)[1 = n + 1. We first consider the case when 

9/ is not SA: 92 = 92t + 9~~, and IIs,(T  )II, IIS,(T.-~ = n. By the in- 

duction hypothesis 92, ,92, ,~ S~2._ ~ so 92eSez..  

Suppose that 9/[ fulfills Lemma 5.4(ii:b). We show that for every a e A, ~ eSa2,. 

I f  tISI(T~.)I I _--< n then this is true by the induction hypothesis. Suppose 

]l Si(Te.) [[ = n + 1 for some a e A .  Hence for every beA,  E~--eb; thus if e"  

is SA then E" -< 92 which is impossible. Thus ~ is not SA; we showed in the 

first part of the proof that if it is so then f~ e SP2.. Let J _c A contain a single 

representative from every component of 92. It is easy to see that the decompo- 

sition 92 = Y ~ j E "  fulfills all the conditions set in Definition 5.8 (iii). We con- 

clude that 92e6vz.+t.  

Suppose 9.1[ fulfills Lemma 5.4(ii, a). Without loss of generality, we may 

assume that 92 consists of a single component. Let PeSx(Tn), let {a~}~ z be 

a sequence of elements in 92 realizing P.  Let z ~ a~ be an order isomorphism, 

and for every z~ Z, P([a~,az+l],9~) = Sl(Tn), and there is no ae(a~,az+l) 

which realizes P such that P([a~,a],92) = P([a,a~+1],92) = SI(T,~). The exis- 

tence of such a sequence was assured in Lemma 5.5. Since 9~ consists of a single 

component by Corollary 3.9, [a~}~z is unbounded from below and unbounded 

from above. Let z e 77; we define A, = {a [ a >= a~. There is b > a which realizes 

P ,  and P([a,,b],ggo ~ SI(T~); or a <  a~ and there is b _<_ a which realizes P 

and P([b,a,], 92) ~ SI(T~)}. 

There is Q, which is not realized in A,,  for otherwise there are bx, b z which 

realize P such that bl =< a, < b~_ and 

P([bl, a,], 92) ~ S,(T~) ~ P([a~, b2], 92) 

but P([bi, b2], 9i) = Sx(T~). This contradicts Lemma 5.6. Since A, is definable 
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over at and Q~ is isolated, we may assume that (2,1 = (2z2 for every zl and z2. 

Let (2z = (2. Let $(Vo, X) have the following meaning: there is some y which 

realizes P, VoeCOnV({x,y}) and P(conv({x, yJ),9.D r SI(T~). Using the prop- 

erties of {a,}~ ~ e and Lemma 5.6 it can be shown that for every z and for every 

a E A,, A, = 19/I,,a. By Lemma 5.7 if bl, b2 ~ At and P(b~, 92) = P(b2, 9/) then 

P(bx,9/z) = P(b2,9/z), so since Q~P(Az, 9/), More- 

over, for every zl,z2, 9/~1=9/~ 2. Let B~ = {a]A~<a<A~+1}. Since 

Q~P([a~,a~+I],gd)-P(A~UA~+I,9/), B~ ~ ~ .  It is easy to see that there is 

r o, x) such that for every z and for every b ~ B~, B~ = 1 9/[~.b. Since P ~ P(B~, 9I) 
again we obtain that II SI(T  )II < [I s,(r )I1 and ~3~, = ~3~ for every zl and z 2 . 

By our induction hypothesis 9/z,~3~ 6:z,_ 1 hence 9/~ + ~3~ ~ Sa2~. 9 / =  Y ~  2, 

(9/~ + ~ )  and this decomposition fulfills all the conditions of  Definition 5.8 (ii), 

hence 9/~S#2~+1. Q.E.D. 

COROLLARY 5.10. For every n < t o ,  {T[ IIs,<T)II Z n} is finite. 

PROOF. We showed that 

{T I Ilsl(z)ll __< n} _ {T l T h a s  a model in S:2n_1}; 

since our language Lis finite {T] Thas a model in 6:0} is finite. A straightforward 

induction shows that {T] Thas  a model in 5:~} is finite; hence the corollary is 

proved. 

COROLLARY 5.11. I f  L(T) is finite and Sj(T) is finite then T has a .finite 
axiomatization. 

PROOF. We follow the proof of Theorem 5.9. I f  l ! s : ) l l - -  x then, clearly, 

Thas a finite axiomatization. If  II S,<T )11 -- n + 1 , 9 / =  9/4 + 9/~4 we construct 

a finite axiomatization for 9 /by  means of the axiomatizations for 9/~ and 9/_ 4 . 

The same can be done also in the other cases considered in Theorem 5.9. 

We shall say that T is to-categorical if any two models of  T of cardinality ~ to 

are isomorphic. 9/ is  said to be co-categorical if T, n is co-categorical. 

DEFINmON. We define inductively the class of  models cg i . <go = 5ao �9 9/~ ~+1  

iff 9 / E ~  i or 9/decomposes as in Definition 5.8 (i) or (iii). Let g' = (.J ~ , ~ .  

Theorem 5.12 is due to Rosenstein [6-]. 

TrI~OREM 5.12. 9/ is r iff 9 / ~ .  

We shall need the following lemma: 

LE~LA 5.13. If  9/~:r and ~ .C 9/ then ~Ecr 
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The proof  is easy. 

Most of  the results of  this section hold, possibly with trivial corrections, even 

if L(T)  is infinite. We formulate some of these results for further application. 

LEMMA 5.14. Let L be finite or infinite, then: 

(i) I f  9.I and ~ are to-categorical models in the language L so is 9~ + ~ .  

= ~ k  such that the sets (ii) I f  9.I ~,j ~j 9~j, (J ,  < )  - Q,  there are ~1, ..., 
k j Ji = {j[9~j - 9~ i} are dense in J ,  1.3~=1 ~ = J and each 9~iisto-categorical 

then so is 9.I. 

LEMMA 5.15. Let 9.[ be an to-categorical model in the language L (L may 

be finite or infinite); then 

(i) I f  ~3 .C ~ then ~ is to-categorical. 

(ii) {T~ 1~3 C 9~} is finite. 

6. The number of countable models of a theory 

In this section we shall find the number of  nonisomorphic countable models 

of  a theory T. In the first part of the section we shall discuss this problem in the 

case when the models of  T are SA. In this case our result does not depend on 

whether L(T)  is finite or countable. However, if the models of  T are not SA, 

we shall obtain different results for L(T)  finite and countable. It is Theorem 6.12 

which is true when L(T)  is finite but not otherwise. 

LEMMA 6.1. Let 9.It be SA, 9~ t - ~2 - 9~a, and 9~ = 9.[ t + 9.I2 + ~a .  

Let d e A2 and let ~3 = 9~x + ~ 2  + 9~a; then ~3 < 9.I. 

PROOF. It suffices to show that for every c E C~2, for every b ~ 19~t I u ] 9~a ] 

and for every ~b if there is a ~ A2 such that 9~ ~ ~b[b, a, c],  then there is a '  E B 

such that 9.I ~ q~[b, a ' ,  c] .  Without loss of generality, we may assume that 

b e At ,  c e C~2,a e A 2 - C62, b < a < c, and 9.[ ~ ~b[b, a, c].  Suppose by way 

of  contradiction there is no a '  e A t  such that ~ ~ ck[b,a',c ]. Let $*(Vo, Vt) be 

the testing formula of  ~b(Vo, vl, c) in 9~ 1 ; then 9.it ~ ~ 3udp*(b, u). Since 9.It -< 9.I, 

9L V ~ 3u~b*(b, u) ^ ~b(b, a, c). The formula 

X(Vo, c) = Vo < c ^ 3x 3y(x < Vo ^Y  < Vo ̂  "" 3u ~*(x, u) ^ ~(x, y, c)) 

defines over c a convex set and cr n I t,c]. 
C c Since C ~  C~, 19.I Ix.~ ~ - n, hence 19~ ]x.~ = 19~, e ] .  

Let d' e Aa ; since 9~ ~ ~ld',  c], there are b', a '  < d' such that 9~ k ~ 3u~b*(b', u) 

^ gp[b',a',c], and so 9~x ~ q~*[b',a'].  Since 9~ -< 9~, 9.I ~ ~k*[b',a'],  but this is 
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impossible. So there exists a '  ~ A1, such that 9~ ~ ~[b, a ' ,  c],  and the lemma is 

proved. 

LEMMA 6.2. I f  [I St(T) It -->m and the models of Tare  SA, then T has 

2 ~ nonisomorphic countable models. 

PROOF. Let P be a nonisolated type of SI(T).  Let 9~ t be a countable model 

of T in which P is realized, and let 9~ 2 be a countable model of T omitting P .  

Let ~ = 9.[ 2 + ff-~l + 9A2 where P(a, 9At) = P .  Since ~ -< 9~ 2 + 9~ 1 + 9~ 2 >- ~ t ,  

P(afiB) = P and ~ = ff~l. I f  ~31 and ~32 are nonisomorphic ordered sets then 

~ "  ~31 and ~ �9 ~32 are nonisomorphic, for the set of components of ~ �9 ~3t 

in which P is realized has the order type of ~31 and the same set of components 

in ~ "  ~32 has the order type of Z)2. Since there are 2 ~' countable order types 

we obtain 2 ~' nonisomorphic models of the form ~ �9 ~3 where ~3 is a countable 

ordered set, and the lemma is proved. 

We obtain a similar result when St(T) is finite. 

LEMMA 6.3. I f  St(T) is finite, then either T is m-categorical or T has 2 ~ 

nonisomorphic countable models. 

PROOF. Without loss of generality, we can assume that L(T) is finite. We 

prove the theorem by induction on IIsI(T)II. If  IIs ,(z)l l  = 1 then it is easy 

to check that T has a model which contains a single point, or T has a model of  

order type r/, or T has a model of order type Z,  and each unary predicate in a 

model of T is either empty or the whole universe. In any of these cases either T 

is m-categorical or T has 2 ~ nonisomorphic countable models. 

Suppose I1 S (T)I1 = n + 1. We distinguish between the case when the models 

of T are not SA, and cases (ii, a) and (ii, b) of Lemma 5.4. In the first case let 

9Abe a countable model of T, then 93[ = 9.I#+ 9A~# where II S (T o)II _-< n and 

II n Xf ~ and 9A~§ are both m-categorical then so is 9A. If, say, 9.I§ 

is not m-categorical then by the induction hypothesis there is a set of  countable 

models { ~,1 v < 2~} such that for every v, ~ - 9.I~ andi fv  1 ~ v 2 t h e n ~ , 2 .  

Let 9~ = ~B, + ~~~. Obviously 9A, = 9~, and by Lemma 2.5 (ii) if vt ~ v2,9~,~ 

9.I w In case (a) of Lemma 5.4 (ii) T has a countable model 9.I consisting of  

a single component. If  ~1 and ~32 are nonisomorphic ordered sets, then clearly, 

9A'~31 ~ 9A'~)2 and 9A.~3~ -= 9A. So obviously T has 2 '~ nonisomorphic count- 

able models. In Case ( b ) o f  Lemma 5.4 (ii) choose a model 9A of T such 

that: ~ = ~ ,~e ~ ,  9~ is countable, each 9~, is a component of  9~, and 

there are 9A~, ..., 9A k such that 9A ~ ~ 92 ~ for i ~ j ,  and the sets Q~ = {r[ 9.[,~ 9.['} 
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are dense in Q and ~ k= 1 Q, = Q- We further assume that each 9.1., is definable 

over any of  its elements. If  the 9/~'s are all co-categorical then so is 9/. If  9/*~ is not 

co-categorical for some io, let T ' =  Tn,o, then either IIS,(T'>II Z .  or 

II S,(T')II -- n § ~ and 9/`0 is not SA. Thus by the induction hypothesis or by 

the same argument as in the first case, T '  has 2 * nonisomorphic countable models. 

Let {~3~ 1 v < 2  ̀ ~ be a set of such models, and define 9/~ = 2~ ,~a 9/" where 

9/" = 9/, if r 6 Qio and 9/', = ~3~ if r e Qio. Then obviously 9.I~ is a model of  T. 

If  vt # v: then 9/,, ~ 9/~,  for the components of  9/,, which are elementarily 

equivalent to 9/*~ are not isomorphic to the components of 9.t~ which are ele- 

mentarily equivalent to 9/*o. Hence T has 2'0 nonisomorphic countable models, 

and the lemma is proved. 

LEMMA 6.4. I f  for some model 9~ of T and some a~ ~ ~rr, 9ft. is not co.cate- 

gorical, then T has 2 ~ nonisomorphic countable models. 

PROOF. Let ~3 ~ 9 /and  ~ be co-saturated. Let ~3 be the submodel of  ~3 with 

universe cony( 1 9/[o,~3). By Theorem 2.10(i), ~3 >- 9/o, hence ~3 is not co-cate- 

gorical, but ~3 ~ ~3,, thus by Lemma 5.15(i), ~3. is not co-categorical. By Lemma 

4.8, ~3| is SA. Hence by Lemmas 6.2 and 6.3 there are 2 ̀0 nonisomorphic count- 

able models elementarily equivalent to ~| Let{~3, Iv < 2`o} be a set of such models. 

Let ~-<~3 be countable 

C_ = {c l ceC  and 

then {~_ + ~3, + ~ l v  < 2'~ 

and 

c < c = { lc c and c >  

is a set of 2 ~ nonisomorphic countable models of  T. 

LEMMA 6.5. Let t~ E ~ T  and 3- = {T, ao 19/is  a model of T}; then if every 

T' e ~  is co-categorical then if" is finite. 

PROOF. For every T ' E  ~" let 9/(T') be a model of  T such that 9/(T')| b T'. 

Let ~3 be co-saturated and ~3 >-9~(T') for every T'  ~ J ' ;  then, as in Lemma 

6.4, for every T ' ~ ' ,  ~3..3 73r,>- ~I(T'),~ where D r, = conv( l~(T ' ) ) , ,~B) .  

Since ~ is co-categorical, by Lemma 5.15 (ii), J "  is finite. 

LEMMA 6.6. Let J f  ~_ ~ be a set of limit kernels, such that for no 

K E,Yd, K is an accumulation point of 3V relative to ,Yf~. Let ~ be the sub- 

model of 9/having A -  U {KIK e'~t'} as its universe; then ~ -<~.  

PROOF. Suppose it is not true that ~ ~ 9/; then there is b ~ B k and a formula 

r vo) and an element a e A - B  such that ~ [ b , a ]  but for no beB,  

9.I~ ~b[/~,b]. Let a ~ K e  3C; by our assumption on ~ there is ~(Vo) such that 
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for every K ' e ~ / ' -  {K),  and [~1r 

does not intersect b. By Corollary 2.4 there is ~*(v0) such that for every a ' ~  A, 

9~ ~ ~*[a ' ]  i f f a '~  [9I[~ and ~ ~ ~ [ b , a ' ] .  Let 

~(Vo) - 3x13x2(x ,  < Vo < x2 ^ ~* (x l )  ^ ~ * ( x 2 ) ) ;  

then ~ defines a convex nonempty subset of  A. 4"  is satisfied by no element 

outside K ,  for [9~[~ - K _~ B, and ~b is satisfied by an element of  B. Thus 

[9~ [~ _ K .  But K ~ ~Y'~ so [9~ [~ = K ,  contradicting the fact that K is a limit 

kernel. Thus ~ -< 9~, and the lemma is proved. 

THEOREM 6.7. Either T has only a finite number of nonisomorphic countable 
models or T has 2 ~ nonisomorhpic countable models. 

PROOF. By Lemmas 6.2 and 6.3 the theorem is true when the models of  T 

are SA. If  for some n, ]] S,(T)][ = 2 '~, trivially Thas 2 ~' nonisomorphic countable 

models. Suppose the models of  T are not SA and l[ S~(T)[[ __< co for every n. 

Let 9~ be a countable co-saturated model of  T. If  there are infinitely many limit 

kernels in :,Y'~, let f be an infinite subset of JY'~t consisting of  limit kernels, 

such that for no K e ~ ,  K is an accumulation point of  ~ .  For every JY" _~ JY" 

let 9~ w, be the submodel of  ~ having A -  [.J {K'IK'~ ~Y('} as its universe. 

By Lemma 6.6 9~ w, is a model of Tfor every :~(" _ ~ ' .  Obviously if ~ ' l  ~ J (2  

then 9~w, ;~ ~ r ~ .  Thus we obtain 2 ~ nonisomorphic models of  T as demanded. 

Suppose now that the models of  T have only finitely many limit kernels. I f  

there is a model of  T, ~ ,  and �9 ~ ~ ' r  such that 9~| is not co-categorical, then 

by Lemma 6.4, T has 2 ~ nonisomorphic countable models. 

It remains to consider the case where there are only finitely many limit kernels 

in ~ ' r ,  and for every �9 e ~ ' r ,  and a model 9.I of  T, 9~  is co-categorical. For 

every �9 ~ ~ ' r  let ~ '#  = {T~| 9~ is a model of  T}; then by Lemma 6.5 ~ '#  is 

finite for every �9 e ~'~'r. Further, if �9 is isolated in ~ ' r  then [[ ~-~ l[ = 1. Since 

there are only finitely many limit types in ~ r  there are only finitely many ~ '# ' s  

for which [[ ~ |  [[ > 1. It is now obvious that such T has only finitely many 

nonisomorphic countable models, and the theorem is proved. 

REMARK. Indeed for every positive n ~ 2 there is T such that T has exactly 

n nonisomorphic countable models. 

The result of  Theorem 6.7 can be sharpened when L(T) is finite, namely, the 

number of  nonisomorphic countable models is then either one or 2% The dif- 

ference arises because if L(T) is finite and �9 is a limit type in ~ ' r  then there is 
always a model of  T, 9~ such that 9 ~  is not to-categorical. We already saw in 
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Lemma 6.4 that if this is the case then Thas 2 ~' nonisomorphic countable models. 

LEPTA 6.8. Let 9/ be a model of T, L(T)  is finite, 

( ,li co} c 

~3~ is co-categorical, and ~B = U ~,~ (~3~,#~); then there is 9/' >- 9 / such  that 

PRoo~. Let {b , [zeT}  _~ B be such that b,, < b~ for z~ _~ z2 and 

U,>o[b-z, bz] = B. For every z > 0 there is i such that B, ~_ [b-z, bz]. Le t  

~ = (~'z, (b_ , ,  b_,+ ~, ..., b,))  where ~3'z is the submodel of ~ with universe 

[b-z, b~]. By Lemma 5.13 ~3z is co-categorical and by Corollary 5.11 it has a 

a finite axiomatization, say, i f ' .  Let Oz be the relativization of ~'z to the sub- 

model defined by the formula b-z < Vo < ~ ,  that is, @z says that [b_=, b~] 

satisfies ~ ' .  We may assume that A c3 B = ~ .  Let E = D(95) u {~b~ I z > 0} 

U (qbi(b~)[ieco} where D(9/) is the complete diagram of 9/. It is easily seen 

that?E is consistent. Let 9.1:' be a countable model of Y~ and let a~ be the inter- 

pretation of bz in W .  Let ~ '  be the submodel of 9/' having conv({a~ I z ~ Z}) 

as its universe, and ~ the submodel of 9/' with universe [a_~, a J .  Since ~ ~ ~3z 

~ '  --- ~ .  Obviously 9I' 1' L(T) >- 9/ and ~ '  ( 9/~,,li~o, ~ �9 Q.E.D. 

LEMMA 6.9. Let (A,  < )  be an infinite, partially ordered set. For every 

a e A  {x[x<a}  is finite. If we define h ( a ) =  max(n[ there are a , ,  

i = O,. . . ,n,  such that ao < a~ ... < a, = a } .  For every n {a[h(a) ~ n} is finite. 

Then there is B ~ A of order type co. 

PROOF. We define a new relation on A.  a < l b  if there is a chain 

ao < ax < "" < ahcb) = b such that a = ai for some i, 0 < i < h(b). It is easily 

seen that <1 partially orders A,  if a < l b  then a < b ,  and if we define 

hl(a ) = max {n I there are a~, i = 0,. . . ,  n, such that ao < 1 ax < 1 "'" < t a, = a}, 

then for every a ~ A, h(a) = hi(a).  We define inductively sequences bi and B t 

such that B~ is infinite and for every b E B~, b~ < t b. For every a e A there is 

b < t a such that hi(b) = 0. Since { b Ibm(b) = 0 } is finite there is 

bo such that ht(bo) = 0  and {b[bo < t b }  is infinite. Let B o = {b[bo < t b } .  

Suppose bl and B~ are already defined. If  b is a successor of b~ relative to < t 

then h(b) = h(bi) + 1. Thus {b I b is a successor of bi relative to < 1} is finite. 

There is b' which is a successor ofb relative to < t such that {b I b ~ Bl and b' < t b} 

is infinite. Define bi+t = b ' a n d  B~+I = ( b [bE B t  and b~+l<xb}. The set 

B = {bi] i ~ co} is as desired. 
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LEMMA 6.10. Let L be a finite language, ~ be an infinite set of co-cate- 

gorical nonisomorphic countable models in the language L such that if 91~.~ 

andS3 .C 91, then there is ~3 ' ~ ./K such t h a t , '  ~ ~ ; then there are sequences 

{91~}~, and {g}i~, such that for every i~co, 91~r  and 91~Zg, 911+1. 

PROOF. We define a partial order < on ~ ' :  ~ < 9i iff for some n ~ ~ ~n, 

~ n + l ,  91ecr -~ '~  and ~ Cg91 for some g. Obviously < is a partial 

order; if 9 1 ~ ' n r r  then {~B[~ <91} _c ~ r  and is therefore finite. 

It is easily seen that for every 91e d4, h(gX) = n iff 91 ~ c~,; hence {91 I = n} 
is finite. By Lemma 6.9 r162162 has a subset of order type co, and this proves the 

lemma. 

LEMMA 6.11. l f  Lis a finite language and for every i~co 91~ is an co-catego- 

rical countable model in the language L, 911 ~ 91j for every i # j and 91i C 91i+1 

for every i ~ 09, then [.J i~o, 91~ is not co-categorical. 

PROOF. Suppose I,.J~,91i~c~ ~, then by Lemma 5.13 each 91~eC~2n, and this 

is impossible, for there are only finitely many complete theories which have a 

model in ~'2~. 

THEOREM 6.12. I f  L(T) is finite then either T is co-categorical or T has 

2 ~ nonisomorphic coutable models. 

PROOf. By Lemmas 6.2 and 6.3 the theorem is true for theories whose models 

are SA. By the proof of Theorem 6.7, if there are infinitely many limit types in 

~-r then T has 2 ~' nonisomorphic countable models. Suppose there are only 

finitely many limit types in ~-r- Let 91 be a countable model of T. If  91| is not 

co-categorical for some isolated �9 in ~r r then, since 91| is SA, T has 2 '~ 

nonisomorphic countable models. 

Suppose that for every isolated �9 in ~ ' r ,  9I| is co-categorical. If ~Fn 

is finite then T is co-categorical; otherwise, we may assume that 3~e'~t has a 

convex subset of order type co+ 1. Let this subset be {R~}~o,+~ and 

i ~ R~ be an order isomorphism. Suppose first that there is an infinite 

subset of co, M, such that if i , j s M  and i # j  then ~ i ~  ~j. By Lemma 6.10, 

there are sequences {v~}~,~, { ~ } ~  such that v~> D for i > j  and v ~ M  for 

every i, E~ C ~ ,  and for every i there is g~ such that E~ (a,E~+~. Let ~ = 91| 

where O r  then by Lemma 6.8, [.Ji~o~(Ei, g ~ ) ~ |  for some ~ - 91. By 

Lemma 6.11, ~ ~,,(~,g~) is not co-categorical, so by Lemma 5.13, ~| is not 

co-categorical. Hence, by Lemma 6.4, T has 2 ̀0 nonisomorphic countable models. 
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Suppose that there are models ~ 1 , " ' , ~ ,  such that for every ieo~, ~,  ~ ~j 

for some j .  We define by induction a sequence {k,}i~o, such that 1 < k~ < n 

and for every i {v [.~,+j ~ r 0 < j < i} = M~ is infinite. It is easy to define ko. 

Suppose ko, " ' ,  k~ are already defined. By the induction hypothesis M, is infinite 

so there is r ,  such that ( v l v eM,  and Rv+i+l ~ ~,} is infinite. Let ki+l = r ,  

then k~+1 has the demanded properties. Let ~3~ ~ �9 = ~j=o~kj, then ~i  is co-cate- 

gorical since each E, is w-categorical. If i > j then ~ 3 ~)j. For every i > j there 
r t are ~ ;  and ~)j such that 9~ .3 ~3~ -9 ~3/, D~ % D j, ~ -~ ~i ,  and ~3~. ~ fi)j; 

Dj is definable in 9~, hence D)is definable in ~)~, sollS,(T ,) II > IIS (T  )I1 whence 

~ ) ~  ~)j. By Lemma 6.11, I..] ~o,~3~ is not o~-catgeorical and by Lemma 6.8, 

U ~,~ ~ c ~3| for some ~ - 9.[. So by Lemma 6.4 we conclude that there are 

2 ~ nonisomorphic countable models elementarily equivalent to 9~. Q.E.D. 

The following theorem can be easily proved by the methods of this section. 

THEOR~ 6.13. I f  T has 2 ~ nonisomorphic countable models, then every 

countable model of T has 2 ~' nonisomorphic countable elementary extensions. 

R~MARK. We did not succeed in answering the following question, which 

is a special case of a more general open problem. 

Let tk be a sentence of L,~,.o, such that < (and equality) are the only nonlogical 

symbols which occur in ~b. Suppose all the models of ~ are linearly ordered by 

< .  How many nonisomorphic countable models does q~ have? We solved this 

question in the following special case: 

THEOREM. Let T be a (first order) theory of linear order and S a countable 

set of types (not necessarily complete) of  a single element. Then the number of 

nonisomorphic countable models of T which omit the types of S is either 2 '~ or 

7. The relation between St(T) and S.(T) 

In this section we investigate the relation between St(T) and Sn(T). It turns 

out that if SI(T) is small then so is Sn(T). Corollary 7.22 and Theorem 7.27 

express this fact. We shall measure the size of S,(T) not only by its cardinality 

but also by its Cantor Bendixon rank. We thus need some topological prelimi- 

naries. 

DEFINmOlqS. Let X be a topological space; then DI(x) denotes the set of 

accumulation points in X, D~ = X ,  D'+I(X) = DI(Dv(X)), and if 6 is a 

limit ordinal then Da(X) = f'l,<~Dv(X). 
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We define the rank of x in X to be oo if x ~ D~(X) for every v and to be 

U{ v Ix ~DV(X)} otherwise. We denote the rank of x in X by R( x ,X ) .  Clearly, 

if R(x, X) = v < oo then x ~ D~(X). 

We define R(X) ,  the rank of  X ,  to be oo if there is some x ~ X for which 

R(x, X) = oo and to be 1.3 {R(x, X)  I x ~ X}  otherwise. 

The proof  of  the following theorem can be found ia [7, p. t70]. 

THEOREM 7.1. (i) I f  X is a countable Hausdorff compact space then there is 

~<col such that D~(X) = ~ .  

(ii) I f  X is a separable compact Hausdorff space then either II X II <= co or 

II x It -- 2 ~  
The next lemma is well known. 

LEMMA 7.2. A continuous one-to-one function from a compact space to 

a Hausdorff space is a homeomorphism into the second space. 

From now on we confine ourselves to countable Hausdorff compact spaces; 

X and Y will denote only such spaces. We list some elementary properties. 

LEMMA 7.3. (i) For every v, Dv(X) is closed in X .  

(ii) R(x, X)  >= v iff  for every neighbourhood V of x and for every ~ < v 

there is x' ~ x in V such that R (x ' ,X )  >= ~. 

(iii) R(x, X)  <= v iff x has a neighbourhood V such that R(x',  X)  < v for 

every x'  ~ x in V. 

(iv) I f  Y ~_ X then /)~(Y) _~ D~(X). 

LEMMA 7.4. Dv+r = De(Dr(X))." 

PROOF. The lemma is easily proved by induction on ~. 

LEMMA 7.5. I f  Xi are closed subsets of X ,  i = 1 , . . . ,n ,  and [.ff=lXi = X 

then: 

(i) 

(ii) 

(iii) 

For every v, Dr (X)=  I,.J n D~(X~) i = l  

I f  x ~ X  then there is i such that R (x ,X )  = R(x, Xi).  

R(X) = m a x { R ( X , )  I i = 1 , . . . ,  n } .  

PROOF. (ii) and (iii) are trivial consequences of (i). So it remains to prove (i). 

We prove (i) by induction on v. For v = 0 there is nothing to prove. Let 6 be a 

limit ordinal and suppose the induction hypothesis is true for every v < 6. Let 

x ~D~(X); then x~  D~(X) for every v < 6. By the induction hypothesis there is 

iv such that x ~ D~(X~ ) ,  hence there is some i such that for every v < 6, x ~ D ~ (X i) 
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hence x eD6(Xi). Let x ~DV+x(x)and suppose the induction hypothesis is true 

for v. Let Vbe a neighbourhood of  x; then there exists x '  # x in V such that 

x' e Dr(X), thus x' ~ D~(Xi) for some i. For every neighbourhood V of x there 

is some/and  somex'  # xin Vsuchtha tx '  eD~(Xi). Thus there is an i such that 

for every neighbourhood Vofx  there is x # x' in V such that x '  e D ~ (X~). Since 

Xi is closed, x e X~ and thus x e D~+I(X~). 

LEMMA 7.6. Let 92 .~ ~ ,  n > 1. C = { P ( b , ~ ) [ b e B " } .  We define 

f :  C -~ Sn(T~): f(P([J,~)) = P(b, 92); 

then f is continuous. 

PROOF. If  4 is a formula with its free variables among Vo,...,vn_ l , denote 

V~ = {Q [ Q e Sn(T~) and Q ~ 4}. Then the set of all such V~'s is a basis for Sn(T). 

Thus it suffices to show that f -  ~(Vr is open in C. Let 4"  be the testing formula 

for 4 ;  then f - l ( v ~ )  = U ~ . ~  C where Uq, = {QI~O~QeS,(T~)}. So f - l ( V ~ ) i  

open, and f is continuous. 

LEMMA 7.7. Let 92 be o~-saturated, a e A ,  and B = [92[| Then: 

(i) P(B, 9A) is closed in SI(T~). 

(ii) {P((a, b), 92) ]b ~ B} is closed in S2(T~). 

(iii) I f  6 is a limit ordinal and for every v < ~ , DV(Sa(T~)) n P(B, 92) ~ (~ , 

then Da(SI(T~)) t~ P(B, 92) ~ ~ .  

PROOF. The proof  of (i) and (ii) is trivial. 

Since D~(SI(T~)) is closed, and by (i), P(B, 92) is closed, and SI(T~) is compact, 

n~<a (D~(Sx(T~)) ~ P(B, 9~)) = Da(SI(T~)) n P(B, 92) ~ ~ , and (iii) is proved. 

LEMMA 7.8. Let 92 be co-saturated, a e A ,  and K e  .,',','U~; let R be the 

submodel of 92 with universe K.  Then: 

(i) The function 9(P(b, ~)) = P(b, 9X), b e K,  from St(T~) to Sx(T~) is a 

homeomorphism. 

(ii) Ifb~, bE e K and P(bl, 92) = P(b2, 92) then P((a, b~), 92) = P((a, b2), 92). 

(iii) The function f from P(K, 92) to S2(T~), defined as 

f(P(b, 92)) = P((a, b), 92), b ~ B, 

is a homeomorphism into S2(T~). 

PROOF. (i) By Lemma 7.6, O is continuous; by Corollary 3.8, ~ is one-to-one, 

and since its domain is compact O is a homeomorphism. 
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(ii) If K consists of a single point there is nothing to prove; otherwise, R 

is SA, hence by Corollary 3.8, P ( b I , R ) =  P(b2,R). By Theorem 2.1(ii), 

P((a, bl) ,  92) = P((a, b2), 91). 

(iii) By Lemma 7.7(ii) the domain o f f - x  is closed, clearly f - 1  is continuous, 

and by ( i i ) f -1  is one-to-one, hence by Lemma 7.2, f - 1  is a homeomorphism. 

We omit the trivial proofs of the following lemmas. 

n - 2  LEMMA 7.9. Let C = {Q[QsSn(T)  and Q ~ A i=o(V~ < Vi+l)}; let 

f : C ~ ( S 2 ( T ) )  "-1 be defined as follows: f ( Q ) =  (P1 , . . . ,P ,_ l )  where Pi 

= { ~ l ~ e Q  and v~-i and v i are the only free variables of d/}, then f is a 

homeomorphism into (S2(T)) "-1. 

LEMMA 7.10. If91 is og-saturated, PsSI (T~) ,  and a s A ,  then {KIKe ~d 
and P(K, 920 ~P} is closed in 2/I~. 

LEMMA 7.11. Let 91 be o)-saturated, a s A ,  Ktso~g'~, isco,  Ksf fg '~,  

limi K s = K where the limit is taken in ~r Qt s P(Ki, 91), i s o9, and limi Qe = Q; 

then Q s P(K, 92). 

LEMMA 7.12. Let91beo)-saturated, a s A , K s . f l ~ , a n d a < b < K ; t h e n :  

(i) K s ,~"~. 

(ii) I f  ~ ( 91and B ~_ { a } u K  then K s o~/'~. 

PROOF. (i) Let R be the submodel of 91 with universe K. Let K = 19i I| 

where �9 s ~ '~.  By Corollary 2.4, K = 1 92[ l| where each ~b s �9 1 defines over b 

a convex set. By Lemma 4.9, either K contains a single element or R is SA. Hence, 

by Lemma 4.10, K s  .r 

(ii) By Corollary 2.3, K --- 1~1| where each ~bs~2 defines over a a 

convex set. Again, by Lemmas 4.9 and 4.10, K e  ~r 

LEMMA 7.13. Let f be an automorphism of 91, a e A ,  and f (a)  > a; then 

there is an automorphism of 91,g such that g(a) = f (a ) ,  and for every x s A,  

g(x) >= x.  

PROOF. Define C = {x[ for every y s c o n v ( { a , x } ) f ( y ) >  y}; then clearly 

C is convex. It is easily seen that f ( C )  = C .  Let 

~f(x)  x e C, #(x) 
I -x x~C; 

then clearly, g is the desired automorphism. 
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LEM~A 7.14. Let 9J( be o>saturated and co-homogeneous, a ~ A.  K1, K2 ~ M TM, 
a < K 1 < K2, and P~P(K1,9~ ) ~P(K2,9~); then 

(i) P(Kx, 9X) ~ P(K2, 9~). 

(ii) I f  there are Ks, K4 ~ ~:a such that P e P(Ks, 9~) 0 P(K4,920 and 

KI < Ks < K4 < K2 and {K I K ~ ~ ~ and K1 <= K <= Ks and P(K, 920 ~ P} is 

infinite, then P(K I, 9~) ~ P(K2, 9.1). 

PROOF. (i) Since P(K1, 9s P(K2, 9~) ~ 0 and ~ is o-homogeneous there 

is an automorphism f of 9.I which carries some element of KI to an element of 

K2. By Lemma 7.13 it can be assumed that f(a) >= a. Obviouslyf(K1)~ o,'r176 

if f(a) < K2 then by Lemma 7.12 (i) also K2 e ~,y-:r Since K2 n f ( K 1 )  # 0 ,  

necessarily K 2 = f (Ka) .  I f  f(a) ~ K2 then for no b ~ K 1 , f(b) < K2. Suppose 

there is some b s K1 such that f(b) > K2. Let D be a convex set definable over a 

which contains K2 and does not contain f (b) .  

Let ~R~ be the submodel of ~[ with universef(K1); then D n f ( K  0 is definable 

and convex in R~, and ~ ~ D t~f(K1) # f(K1). This contradicts the fact that 

.R~ is SA; thus, it is impossible that f ( b ) >  K2 for some b ~K1.  In any case 

f ( K O  c K z and so P(K 1, 9~) ~ P(K2, 9~). 

(ii) Let ~ = {K ~ ~'-~ and K1 < K < K2 and P(K, 920 ~P}. Suppose (ii) 

does not hold; then by (i) if K E X then P(K, 9~) = P(Kz, ~) .  Let K e ~ and 

K # K~; we define A(K) =- {a I a < K and K '  < a for every K '  ~ -~  such that  

K '  < K } .  

Since -~  is closed in ~ and JF ~ is complete, 

conv(K~ ta K2) = (U o,~) k.) I,.J {A(K) [ K~ r K ~ ~Y:}. 

I f  P(A(K),9)OoP(K~,9~)# 0 then there is some K ' ~  A(K) such that 

P(K',9.I) ~_ P(K~,9~,  thus K ' ~  ~ : ;  this contradicts the definition of A(K). 

Hence P(A(K), 9~) c5 P(K~, 9~) = 0 .  Let K ~ ~ and K # K~ ; we show that 

P(A(K), 92) = P(A(K~), 9~). L e t f  be an automorphism of  9~ such that f ( K )  ~ Kz 

0 .  f(A(K)) ~ K '  = ~ for every K '  ~ ~: ,  hence f(A(K)) ~ A(Kz). Simi- 

larly f-~(A(Kz)) ~ A(K). Thus f(A(K)) = A(K~) whence P(A(K), 9.I) = 

P(A(Kz), ~) .  

Let b3 ~ K  s, b4~K4,  and P(b3,~) = P(bg, 9~); let ~3 be the submodel of 9~ 

with universe {clK ~ < c ~ A } .  Then by Corollary 3.7 and Theorem 2.1(ii) 

P((a, b~), 920 = P((a, b~), ~r). This contradicts the fact that bs and b4 belong 

to distinct kernels over a .  Hence P(KI, 9~) ~P(K~, 9~). Q.E.D. 
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Lemma 7.15. I f  92 is co-homogeneous, a c A ,  K1,K2 e ~ a ,  a <_ K I < K 2 

and P(K1, 92) ~ P(K z, 92), then there exists an automorphism f of 92 such that 

f(conv({a} U K1)) _c K2. 

PROOF. Let f be an automorphism of 9 / such  that f (K1)t3  K2 ~ f~.  Then, 

since P(K l, 92) ~ P(Kz, 92), f(K1) ~ K2. If f (a)~  K2 then by Lemma 7.12(i), 

K 2 ~ JC'J(a) , obviously, f(K1)ejf-s(~); but since K 2 and f(K1) intersect and are 

not equal this situation is impossible. So f ( a ) 6 K  2 and the lemma is proved. 

We omit the proof  of the following lemma. 

LEMMA 7.16. I f  92 is co-saturated and co-homogeneous, a e A, K1,Kz E v~f "~, 

a <= K1 < K2, P(K1, 92) c_ P(K2 , 92), and R(K1, .:~g'~ ~ R(K2, . ~ ) ,  then there 

is an automorphism f of 92 such that f(conv({a} u KI)) c_ K2. 

LEMMA 7.17. Let 9~ be co-saturated and co-homogeneous, SI(T~) be atomic, 

a e A ,  P(a, 92) be isolated in SI(T~), ~ .C 92, Ki e . ~  ~, i = 0 , . . . , 4 ,  C < K  o 

< K1 < K2 < K3 < K4 ,  rain C -- a. P(Ko, 92) c~ P(K1, 92) _c P(K2, 92) and 

P(K s, 92)~ P(K4, 92); then there is Q isolated in SI(T~) such that Q e P(K4, 92) 

and Q r P(C, 92). 

PROOF. We first show that there is a formula 49(v0) and c e A such that 

C < c ~ K 2 and 92 ~ 49[c] and for no x ~ C, 92 ~ 49[x]. If  not, then every n-type 

of  a single element which is realized in conv({a} u K2) is realized in C. By 

Lemma 7.15 every n-type which is realized in C is realized in K 1 . Hence every 

n-type which is realized in conv({a} U K 2 )  is realized in K 1 . Let bi~ Ki,  i = 1, 2, 

and P(bl ,  92) = P(bz, 92); then since K 1 is SA and by Corollary 3.6 and Theorem 

2.1(ii), P((a, bi>,92)= P((a, b2>,92). This is obviously a contradiction, hence 

there must be c~conv((a} u K2) and 49(%) as required. Let 49(00) generate 

P(a, 9I) and a < 1 92 Iv,,, < Ks, c e [ 92 I~., E 92. We define X(v o) - 49(00) ̂  qv~(ct(vt) 

^ ~b(vo, vl)). There is some Q isolated in SI(T~) such that Q ~ z. Since e generates 

a type in SI(Ta), Q must be realized in 1 92 ]q,., and, by Lemma 7.15, Q is realized 

in K4. Since Q~49, Q CP(C, 92)thus Q is as required and the lemma is proved. 

LEMMA 7.18. (i) I f  (.Cg', < )  has a separatin9 sequence and J~{'l c :U then 

v~f'l has a separating sequence. 

(ii) I f  ( :U, <> is an ordered set of cardinality 2 ̀0 and Jr" has a separatino 

sequence, then there is a~Fo ~_ ~{" with the followino properties: J~'o is of order 

type ~l, and for every Ko ~ ~Y'o there are v% r', .~g' c .%r both of order type 

such that 
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(KIKo > K~ ~o} < * ' <  Ko<OF"<{KIKo<K E-'~Fo}- 

PROOF. (i) is trivial. 

To prove (ii) we first show that if (A, < ) h a s  a separating sequence and 

[{A][ = 2  ~ then there is a ~ A  such that il[9~,a) l[ = I]( a,9~]H = 2~ Let 

{ ( L,, R,) },~ 0, be a separating sequence for 9.I. Let L = ( a [ a e A and Ill ~t, a) [[ < 2 '~ } 

and R = {a [a ~ A and II (a, ~111 < 2~ Let J = (L, [L,~: L}. If  a ~ L and there 

is some b > a in L, then a e L, for some L, in J .  So It L - l..J d I1 z 1. Since 

cf{2o} > o~, IIJIl--< ~ ,  and each element of J is of cardinality less than 

2~ II u J 11 < 2~ thus II 1. II < 2 ~  Similarly II R II < 2~ and hence A - L u R 

~ .  It tbllows easily from what we proved that there is aY" _ :r of order 

type r/; and it is easy to select JYr o _~ aye" with the desired properties. 

LEMMA 7.19. I f  (X, <) is complete and Y is a closed subset of X then 

the order topology on Y coincides with the relative topology induced on Y by X . 

PROOF. Notice that the identity function is continuous from Y with the rel- 

ative topology, to Y with the order topology. Since both topologies are Haus- 

dorff and compact, the identity mapping must be a homeomorphism, hence the 

topologies must coincide. 

DEFINITION. Let (A, < )  be an ordered set. B _~ A is called n-disjointed in 

A if for every bo eB  there are Cx, C2 ~_ A such that 

{ b l b o > b e B } < C ,  < b o < C a < { b  I bo<beB}  

and II c l II = II c2 II = .  
LEMMA 7.20. Let (X, <) be countable and complete, a e X ,  1 <= R(a,X); 

then there is B ~_ X with the following properties. 

(i) a(~B. 

(ii) B U {a} is complete. 

(iii) B is n-disjointed. 

(iv) a �9 el(B,X). 

(v) Let B o be the topological space with B k3 {a} as the underlying set and 

with the order topology; then R(a, Bo)= R(a,X). 

PROOF. We prove the lemma by induction on R(a, X). For R(a,X) = 1 the 
proof is trivial. Suppose R(a,X) = v > 1. Let {Yi}~o~ be a strictly monotone 
sequence such that: lim~ Yl = a, 

if i > j then R(y,, X) > R(yj, X), 
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and v = min{~ [ ~ > R(yt, X) for every i �9 to}. 

Without loss of generality, Yi < a for every i. By selecting a subsequence we can 

assume that either for every i, R(yi, lyi])= R(yi, X) or for every i ,  

R(y,, [y, l) = R(y,, X).  We prove the lemma in the first case. Since R(yi, l Y,]) < v, 

by the induction hypothesis, there is Ai _ l y,] with properties (i)--(v). I f  i > 0 

let z~ be with the following properties 

(i) z~ �9 Ai. 

(ii) There is X'  _c X such that I1 x '  II = n and Y i-1 < X'  < zi. 

(iii) zi has a successor in Ai. 

(iv) There is no z �9 A, such that z, < z and R(z, A, u {y,}) > R(yi, A, U {y,}), 

where the order topology is taken on A~ u {Yi}. 
Let B = I.Ji>o(A ~ C3 [zi[); it is easy to show that B has the desired properties. 

In the case where for every i, R(y~, [yi[) = R(yi, X),  the construction of B is 

similar. 

THEOREM 7.21. I f  ItSl(T)l[ =< to then !iS2(T) I I < to. 

PROOF. Suppose the theorem is not true and T' is such that II s1(z'~ II Z to 

and II S2(T')il > to. We shall prove the following statements. 

(i) Let ~ be an to-saturated model of T ' ;  then there is b �9 B and 3g" _ j~e-b 

such that II Jc'll = 2o and N {e(g ,~) lg �9  r ~ .  Using (i), we ob- 

tain (ii). 

(ii) There is T for which [ISI(T)II < to and [IS2(T)It = 2 ~', and there is 

an to-saturated model of T, 9~, a � 9  and ~ _~ ocf =such that P(a, 92) is isolated 

in SI(T), I1 ~ l l - -  2~ and f"l {P(K, 9X)]K �9 o,~} # ~ .  

(iii). Let T, 9~, a, off be as in (ii), and let 3~" o be a subset of ~ with properties 

as in Lemma 7.18 (ii). We shall prove that for every K �9 J'g'o there is QK isolated 

in SI(T) such that Q r �9 P(K, 9X) and 

QK ~ e(conv({a} U I..J {K' IK '  < K and K '  �9 ,.,T'o}), 9.I). 

(iv) Using (iii) we shall construct 2 ~' types of  SI(T). 

Since (iv) contradicts (ii) the existence of T '  as above is impossible, and th e 

theorem thus will be proved. 

(i). By Theorem 7.1 (ii), II S=(Z')II = 2'~, hence there must be some P ~ SI(T') 

such that II (olQ�9 T') and Q~_ P} II = 2~ Let ~ be an co-saturated, to-ho- 

mogeneous model of T'. We choose b �9 B such that P(b,~) = P. 
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Since II SI(T')II < w, by Lemma 7.8(ii), II #('b[I = 2`~ For every P ~ S I ( T ' ) ,  let 

.~f'j, = {K]K ~ ~,-b and P(K,~3)~ P}. Again since ]1SI(T')]] < co there must be 

some ~ e  of  power 2 ~  Thus (i) is proved. 

(ii) ,~gb has a separating sequence, thus by Lemma 7.18(i), ~ 'p  has a separating 

sequence and by Lemma 7.18(ii) there is a subset of ~ ,  which is of order type t/. 

Denote this subset by ~{". Without loss of generality, b < K for each K e J (" .  

Let JT" = {K'r},~ where r ~ K', is an order isomorphism. Let a be a real 

number and K,  = sup{K" I r < a} where the supremum is taken in .~b.  By 

Lemmas 7.10, 7.14, and 7.15, P(K~,,~)~_ P({eIb < c < K,},~B). There must 

be some a for which P(K=,~)= P({c[b < c < K=},~3) since otherwise 

II Sa(T')]] = 2`o. Let ~q= be the submodel of ~ whose universe is K, .  By Corol- 

lary 3.8 and since R= is co-saturated, {I SI(T~.)II < co" Denote T = T~.; then 

there is a '  E K= such that P(a', R~,) is isolated in St(T). By the choice of  K= there 

is some a such that b < a < K= and P(a,23) = P(a',~). Since ~ is co-homo- 

geneous there is an automorphism f of ~3 such that f(a) = a'. We show that 

if K E .r and a < K < K ,  then f(K) ~_ K=. First, notice that for every K ~ .r 

if a < K < K=, then P(K,~) ~ P(K=,~), for otherwise P(K'~,~) = P(Kc,,~3) 

for some r < ~ which, by Lemma 7.14, is impossible. Let Q~P(K=,~). Since 

R= is co-saturated and SA, for every c ~ K= there is c' > c which realizes Q. Set 

K '  = sup{K [ K ~ .~b and f(K) n K= # ~2~} where the supremum is taken in 

)e "~. I f K '  is the maximum of the above set then P(K',fB) ~_ P(K=,f3). If  K '  is 

not the maximum then by Lemma 7.10 again P(K',~)~_ P(K,~3), but this is 

possible only i f K '  > K, ;  thus if a < K < K,  then f (K)  ~ K, .  

Let 9 /be  the submodel of ~ whose universe is f- l(K~).  By Lemma 7.12(ii) 

if K ~  o*'~ and K ~ A then K e  ~t~ .  By Lemma 7.12(i) if K ' > a  then K~'~ JT'~. 

Combining the last facts we obtain that if r < ~ and K~ > a then K ' ~  X',~. Since 

9/is co-saturated, ~ '~  is complete, hence II o~e',~ It = 2~ Since P(a',R=) is isolated 

in S~(T) the same is true for P(a, 9I). It is now easy to select X" _ .r as re- 

quired in (ii). T, 9/, a, ~r have the properties mentioned in (ii). 

(iii) Let Yd o be a subset of X" with properties as in Lemma 7.18(ii). Let 

{K,},~.o = X'o where r -~ K, is an order isomorphism, and let C, = {cla =< 

and c < K~ for some q < r}. For every r ~ Q let or _~ or" be of order type q,  

and if K '  e X "  then Cr < K '  < K,. We select K ~ K t, K 2, K a in X "  such that K ~ 

<Kt <K2 <Ka.JT'was chosen so that P(K,, 920 ~ P(K ~, 9/) ~- P(K 2, 9/) ~ P(K t, 
9/)~_ P(K ~ 9/); by Lemma 7.14 the inclusions are all proper, and by Lemma 
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7.17 there is Q, isolated in SI(T) such that QreP(K,, 9.I) - P(C,  off). Hence 

(iii) is proved. 

(iv) Let c E A and P(c, ~ = Q,. We show that c has the following property. 

I f  ql, q2 < r and c~ > c and P(e~, 92) = Qa~ then there is e2 such that c < e2 < ex 

and P(c2,92)= Qq2. If  q = max(qt, q2) then Rq is co-saturated, SA, and 

P(K~, 92)9 Qq~, Qq~ and P(Kq, 92")# 0.,. Let cl > c and P(ct, 92) = Qq, Since 9~ 

is co-homogeneous and P(K,~, 92)~P(cl, 92) there is an automorphism f of  ~.I 

such that f(K~) ~ el,  but f (K , )  ~ e since P(Kq, 92) ~ P(c, 9.[). By Corollary 3.3 

there is c2 < cx, c2 ef(Kq) such that P(c2, 92) = Qa,. Certainly a < c2. On the 

other hand, if r < q~ < q2, obviously there is c t > c such that P(et, 92) = Qq, 

and P((c, cO, 9i) ~ Q#2" 
Let r be the formula expressing the following property of  v o . I f  c t > v o 

and P(cl, 920 = Qql then there is c 2 such that v o < c2 < cx and P(c2, 91) = Q,z 

and if cl > Vo and P(cl, 9i) = Qq~ then there is c2 such that Vo < c2 < cl and 

P(c2, 92) = Qq . Such a formula exists since Q~ is isolated in SI(T).  For each 

irrational 0~ let 

P~ = {r qt, q2 < ~} LJ q,,  q2 > ~}. 

Since Q,~ ~q,#2 for every ql, q2 > r and Q, ~~~bolq~ for every qt, q2 > r then P~ 

is finitely satisfiable. Obviously, if 0c # fl then P~ u PB is contradictory. Since 

each P~ can be extended to a type in St(T),  H St(T)II = 2~. This is a contra- 

diction to the fact that [[ SI(T)[[ < co and the theorem is proved. 

COROLLAI~Y 7.22. I f  I l s : ) l l  -< co, then for every n, [ I s : ) l l  co. 

The proof  is trivial by Lemma 7.9. 

REMARK. Another question could be asked in the same connection. I f  F,(T) 
is atomic, does the same fact hold for F~(T)? The answer to this question is 

negative: there is T for which Fx(T) is atomic and Fz(T) is atomless. 

DEFINITION. Let 92 be a model, a c A  and V ~ A. V i s a  halfneighbourhood 

of a if there exists a convex neighbourhood W of  a such that either 

v= WcaEa I or V =  wcala]. 
DEEINmON. Let 92 be a model, B ~_ A.  P ~ S~(Tn) is B,  92 isolated, if P is 

realized in B,  and there exists ~(Vo) such that for every b e B, 92 k q~[b] iff 92 ~ P[b]. 

I f  v is an ordinal and v < col we define d(v) = U {~ I De(cot) ca (v + 1)#  ~ } .  

We define a sequence {a~},<m: ao = 1; a,+x = a,  + 1 + v  + 1 + d(v) + 1; if 

v is a limit ordinal then a, = ~1 r 
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THEOREM 7.23. Let 9~ be a countable, saturated model, a cA, and Lo ~ Dav(,~~ 
then P(Lo, 9.t) t~ D*(SI(Tn)) ~ ~ .  

PROOV. If  ~ _~ ~r let ~ o ,  denote (~Y{', x) where ~ is the order topology 

on a'U..r will denote (o,~, ~') where z' is the relative topology induced on ~e- 

by o~ "~ We prove the following claim by induction on v: for every countable, 

saturated model 9~, for every a c A ,  and for every LoeDav(a~"~ P(Lo, 9~) n 
Dv(SI(T~)) ~ J~. The claim is trivially true for v = 0. By Lemma 7.7 and the 

induction hypothesis it is true for v a limit ordinal. 

Assume the induction hypothesis for v. We shall prove the following statement. 

Statement I. I f  Ko~D~v+x+v+l(~ e'~ and there exists a halfneighbourhood 

V1 of Ko such that 

(i) R(Ko, Vx) = R(Ko, o~") and 

(ii) if B x = U  Vi-Ko ,  C C Bl, C is definable over a and q~(vo)is realized in C, 

then there exists P e SI(T~) such that ~b e P ,  P is isolated and P is realized in C. 

Then P(Ko, gX) t3 D~+ I(SI(T~)) ~ ~ .  

Proof of Statement I. Without loss of generality, a < Ko.  Assume, by way 

of  contradiction, D'+I(Sx(Tn))n P(Ko, 9~ = ~ .  We show that there exists a 

halfneighbourhood of  Ko,  V _c V~ with the following properties: 

(i) V is a closed subset of  ~ *. 

(ii) [_J V > a. 

(iii) Let B = [,.J V -  Ko; then for every C C B and for every ~b(vo) if C is 
definable over a and q~ is realized in C,  then there exists P ~ P(C, 920 such that 

P is isolated and P ~ .  

(iv) For every ~, Dr = Dr ~'~) n V. 

(v) P( [.JV, 9~) n D~(S~(T~)) = ~ is finite. 

Since 9~ is ~o-saturated and P(Ko, 92) n D'+I(SI(T~a)) = ~ ,  there is a neigh- 

bourhood W of  Ko such that P( U w, 9.I) n D~(S~(T~)) is finite. Since .,~* 

is totally disconnected there is V _  W, where V is a halfneighbourhood of  Ko 

such that Vis closed and open in VI, then V satisfies (i)-(v). Thus we have proved 

the existence of  V. 

For every Q ~  we define ~r ~e'e = {KIKeDa,(V), Q~P(K, 9~)}, then 

for every Q, ~ is closed in V. By the induction hypothesis and by (iv), 

D'~(V) = U ~ , . ~ .  By (iv) and Lemma 7.4, Ko e D  ~+~+~(D'"(V)); by Lemma 

7.5 there exists Q' e ~ such that R(Ko, .r = R (Ko, D "~ (V)). Let :r = "/go'. We 
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show that there existsYl~ ~f" with the following properties. 
w 

(i) _~fis closed in D~ 

(ii) int(_~,Dav(V)) --- _N-- {Ko}. 

(iii) _~ is a neighbourhood of Ko relative to :g" and _,Y" C .r 

Suppose first that Ko < V. Let K' E JY" such that if Ko < K~ < K' and Ks ~ ~f '  

for i =  1,2, then P(Kt, q.P)~D'(S~(Toa))= P(K2,9~)~D'(St(T~t)), and such 

that [Ko,Da'(V), K'] is closed and open in I)~'(V).Let K=.Yf'r~[Ko,D"(V),K']; 
then ~" has the desired properties: obviously ~ has properties (i) and (iii); 

m 

$ m t ( ~ , D  (V)), we have a sequence {Ki}i~, in suppose g 'e  ~ f - { K o }  but g " ~" 

[Ko, Jy'~,K']~Da'(V)-~ such that lim, K s = g .  Y(K,,9.I)n~ r ~ ,  so we 

may assume that there is some Q in ~ which belongs to P(K, 920 for every i; 

hence QeP(g, 9?f), but then QeP(K, 9.I) for all K in _._._~. Take K I > K ~ _ ;  

then P(K, 920 ~ P(KI, 9d) and K 1 ~ .~  contradicting the choice of K l .  If V < K o 

we define ~e" similarly. 

Let K eJY'. If K r Ko then R(K,~_) = R(K,D*'(IO) and by Lemma 7.4 and 

the choice of V, R(K, of "~ = a, + R(K,~_). By (iii) and by the choice of 

jr',, R( Ko, ~ )  = R( Ko, JY" ) = R( Ko, D ~ V) ) ; again a, + R (Ko, J~_) = R( Ko, JY "~) 
so that for K~,K2e_~, R(K1,_~) = R(K2, _~) iffR(K~,uY TM) = R(K2,aY'~). 

Let Kie~_, K i 4 K  o, i = 1 , 2 , 3 , 4 ,  K I < K z < K 3 < K 4 ,  and R(K1, 
R(K2,_~). We show that there exists a formula qS(vo) which is satisfied by 

some element ~f conv({a} u Ks) and by no element of conv({a} w K~). If not, 

then by Lemma 7.16 if Qa, "" ", Q, are n-types which are realized in conv({a} u Ka) 

then (Qt, "",Q,) is realized in K2. Take bz, ba in Kz, Ka respectively such that 

P(b2, 9.P) = P(ba, 9.I); then by Corollary 3.6, P((a, bl), 9~) = e((a, b~), 9j) which 

is a contradiction. By the third property of V there exists an isolated P in S~(T.a) 

and some c such that K~ < c < K4 and P is not realized in conv((a} U Kt) and 

L e t : ~ =  D~(~) .  Since . ~  is closed in ~g'*, by Lemma 7.19 . ~  = :,~o,. So 

by Lemma 7.20 there exists ~g" _-q )F such that: 

(i) K o r ~Y'. 

(ii) Let ~f'o = ~ U {Ko}; then -r is complete. 

(iii) fff is 4-disjointed in ~,Y'. 

(iv) Ko Ecl(.,Y',~ ~ = cl(:~f,.Yl). 

(v) R(Ko, = s(tCo,JC). 
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Let K ~ g";  we define a formula ffK and a type PK. Since A- is 4-disjointed 

there are Ks in A----, 1 < i < 4, such that {K' I A-' ~ K '  < K} < Kt  < K2 < K3 

< K4 < K .  By Theorem 7.1 there is ~ such that Dr = ~ so there are infinitely 

many isolated kernels of _A- between K1 and K3. We choose three of those: 

K 1 < K 2 < K 3 < K ~ < K 3 . Since R(K1, ~ ~ R(K2,_~"), there is PK isolated 

in SI(Tn) which is not realized in conv({a} u K1) but i s realized in K3. Let 

qS~ generate PK. Let K ~ A- and K '  be its successor in A-. We define 

~K(Vo) -= Vx3y( ( (x  > Vo ^ rk~(x)) -~ (Vo < y < x ^ ~,(y)))  

^ ((Vo < x ^ C~K,(X)) -~ (V o < y < X ^ 4pK(y))) ). 

For K ~ A-o let tF K = {~L I A- 9 L < K and L has a successor in A-} U { ~ OL ] 

A- 9 L > K and L has a successor in A-}. We claim: 

(i) For every K ~ 3(f o there exists P ~ SI(T~) such that P __. ~F K . 

(ii) I f  K1 < K2 are kernels in A- then there is g/tc(Vo) such that ~K ~ tFg2 
and ~ ~k~c ~ xPK,. 

(iii) I f  K # K o and K~Dg(A~'~ *FKC_QK, 

and there exists c such that K :~ c < [.J {K' I K < K' A-} and 9~ ~ QK[c]. 

To prove (i), it suffices to show that ~FK is realized by some element of 9~. Let 

K EA-, and K~ < K2 < K3 < K4 < K be the kernels belonging to A - - A - ,  

such that e~c E P(K 3, ~) and Px ~ P(conv({a} U KI), 9.0. Choose c ~ K such that 

P(c, 9g)r P(conv({a} U K3), 9g); then 9.I ~ ~FK[c], because all the PL's for L <  K 

are realized in K2 which is SA. Since the ~FK's are realized hugo is finitely satisfiable 

in 9.I, hence there is P ~ SI(Tn) containing tF~c , for every K e A-o. We omit the 

trivial proof of (ii). 

To prove (iii) we define for every K ~ A-, K > ; if K has a successor in A- then 

K > = K ,  otherwise, 

K > = K u ( b l K < b  and for every K ' ~ A - , i f K ' > K  then b < K ' } .  K > 

is the intersection of convex sets definable over a .  We prove by induction on 

r that, when ~ < co I and K ~ De(A-g ") and K ~ Ko, then there is P ~ D"(SI(Ta)) 

such that ~FK _~ P6P(K>,9JO. There is nothing to prove when ~ = 0. I f  ~ is 

a limit ordinal K 6 De(A "~ and K ~ Ko, then, by the induction hypothesis, 

for every r /<  ~ there is Q~ ~ Dr such that Q~ ___ ~F K and Q~ ~P(K >, 9,0. 

Let Q be a limit point of {Q~}~<r then it is easily seen that Q ~ u / r ,  

Q e P(K>,gg), and Q ~ De(SifT.a)). 

Assume the induction hypothesis for 4, and let K~Dr ~ and K ~ Ko. 

Let {L,)~,o be a strictly monotone sequence of kernels in De(A- ~ such that 
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limiL~ = Kwhere the limit is taken in ~('o ~ . By the induction hypothesis we have 

Qi such that Qi ~ P(Li, 9.i) N Dg(SI(T~)) and Qi ~- ~FLi. Without loss of generality, 

limiQi =Qi. By (ii), Q~ # Qj for i # j so that Q ~D~+I(S:(T~)). Clearly Q ~_ ~F r. 

To see that Q is realized in K > consider first the ease when Li > K ,  then let 

Lbethe inf imum of the Li's in ~/.a; then L _  ~ K > , and obviously Q is realized 

inL. If  L i < K let Lbe  the supremum of the Li's in J~g'~ then Q is realized in L. 

We remember that O i P(Li, 9-t)rnP(K,9~):A ~ so that by Lemma 7.11, 

P(L, ~) rn P(K, ~) ~ ~ , so P(L, 9.I) ~_ P(K, 92), thus Q ~ P(K, 9.1"). We may now 

show that K o has a similar property; that is, since as we shall see, K o ~ D v+ x(~o,  ), 

there is some Qr such that Q ~_ Wro and Q is realized in Ko. 

Koe Da v+ l + ~+ l (~ ) ,  hence Ko eD~v+'+~+l(V). By Lemma 7.4, K 0 ~O '+~+' 

(D~(V)). We chose ~Y" so that K o ~ O 1 +~+ 1(0g"). Since ~ is a neighbourhood of 

K o relative to ~/',, Ko~D~+~+I(~) ;  again by Lemma 7.4, Ko~D~+I(~)  
hence Ko ~ D ~+ 1(~(o,). To show the existence of Q with the properties mentioned, 

we merely have to repeat the same arguments. 

We deduced that D~+'(SI(T~))n P(Ko, 9.I) :A ~ in contradiction to our as- 

sumption; hence it must be the case that D~+I(SI(T~)) r3 P(Ko, 9.I) # ~ .  
Now that we have proved Statement I we proceed to the general ease. Let 

L o e Da~(:,T "a ). We may assume that a < L o . We define V1 = {K I K ~ ~r and 

a ___< K __< Lo} and V2 = ( K I K ~ g  "a and L o < K}; then by Lemma 7.5 either 

R(Lo, V1)= R(Lo, J~F ~ or R(L o, V2)= R(Lo,~a). We consider the first ease. 

Assume by way of contradiction that P(Lo,9.I) r3 D~+I(SI(T~)) --- ~ .  Let 

B = U V, - L o ;  we may assume that P(a, 9.I) is B, 9~ isolated for otherwise 

we replace a by b ~ B such that P(b, 9~) is B, 9~ isolated, and by Lemma 7.12(i), 

L o e D ~ + i (~g-b). Let V C V1 be a halfneighbourhood of L o with the following 

properties: 

(i) V is closed in vY TM. 

(ii) For all ~, Dg(V) = D~(~ ~ (3 V. 

(iii) D~(SI(T~) n P( U V, 9.I) = ~ is finite. 

(iv) Dv+'(SI(T~t))nP(U V, 9.I) = ~ .  

We now choose JY" and oY(" as before; then Lo~D 1+~+1+a(~)+1 ( ~ ) .  Thus there 

is Ko~DI+'+I(~) and K o # L o .  We take K1, K2 in ~ such that 

R(Kx, X TM) # R(K2,~  "") and K o < Kt  < K2 < Lo. By Lemma 7.16 there exists 

an automorphism f o f  9~ such that f (K2) - conv({a} u K 0 .  Let K~ = f(K2);  

R2,R ~ are the submodels of 9~ whose universes are K2 and K~ respectively. 
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P(f-1(a),9.I) is K2, ~ isolated, hence by Lemma 7.8(i), P(f-l(a), R2) is isolated 

in Sl(Ta2 ). Hence: (i) P(a,$~2') is isolated in Sl(Ta~). Let U = {K]Ke.~f'~ 
and a <-K<-Kx}. By Lemma 7.12(ii), U C.;r 2-Hence we conclude (ii): 

Ko~D*v+l+~+x(~ff~). Let B ' =  (.JU,and C CB', C~- I ~ l , . o .  Let ~(Vo) be 

a formula which is satisfied by a member of C. Since ~R' is co-saturated and since 2 

by Lemma 7.8(i) only countably many types of Sx(Ta~) are realized in R~, SI(Ta~) 

is countable and therefore atomic. Let a(vo) generate P(a, ~'2) and let Q ~ Si(Ta~) 

be isolated and Q ~ 3x(ct(x) A ~b(x, v0)) n ~(V0); then it is easily seen that Q is 

realized in C. From the first part of the proof we now conclude that there is 

P~D'+I(SI(Tsd))nP(Ko, R~). Let c~Ko realize P; then by Lemma 7.8(i), 

P(c, 92) ~ D v+ I(SI(Tgj)). Since we chose K o ~ V, P(Ko, 92) n D"+ I(SI(T~)) = ~ , 
and we arrive at a contradiction. Hence it must be the case that 

e(Lo, ~) n D "+1 (SI(Tgj)) # ~Zf. 

We now turn to the case when R(Lo, 112) = R(Lo, j~ro). Assume again that 

D*+I(SI(Tn)) U P(Lo, 9.1) = ~ ,  and choose V ~ Vz, a halfneighbourhood of L0, 

such that P( (_} V) nD*(S~(T~)) is finite, P( (.J v ) n  D*+ ~(S~(Tn)) = ~ ,  and V 

is closed in o,~r We show the impossibility of the following situation: there 

exists K0 ~ D~+I+'+x(~F ~) n V, K1,K2 r ~Z",P(K~, 92) ~ P(K2, 9~),Ko < K~ < K2, 
R(Kt,a4~ "a) ~ R(K2, J~ra), and a < b < K o such that e(b, 92) is cony ((a} td K2), 9~ 

isolated. Suppose such a situation does occur. By Lernma 7.16 there is an auto- 

morphism f of 93[ such that conv({a} t.) K1) _~ f(K~). Denote R2 and ~q'z the 

submodets of ~ whose universes are K~ and f(Kz) respectively. By Lemma 

7.8(0, P( f -  l(b), ~2) is isolated in S~(Ta'~), thus P(b, 2R'z) is also isolated in S~(Ta~). 
By an argument already used before, we conclude that if C ( f (K2) ,  C is definable 

over b in R '  2 and ~b(Vo) is a formula which is satisfied in ~R: by some element 

of C; then there exists P isolated in St(Ta~) such that P H P(C, ~2) and P 9 ~b(oo). 

Again, by Lemma 7.12(i), (ii), Ko~D*'+I+'+I(:gF~). Now, by the first part of 

the proof, P ( K o , ~ ) ~ D  "+~(S~(T~'~)) ~ ~ ,  and by Lemma 7.8(i) 

p(Ko, gor)OD'+x(S~(T~a)) ~ ~ contradicting the choice of V. 

Let ~ = D~ V. By Lemma 7.20 there is ~ff ~ ~g" with the 

following properties: 

(i) Lo ~f f .  

(ii) Let ~ o  = ~ td {Lo}; then o,4Fo is complete. 

(iii) ~ff is 2-disjointed. 

(iv) R(L o,, o9 = R(Lo, 
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We define ~: ~ o  -'* oh: 

z(K) = min{R(P, St(T~))[P ~ P(conv((a} u K), 9.I)}. 

Obviously, if K1 < K2 then z(K1) > z(K2). We show that also z(K~) > z(K2). 

If not, then z(Ki) = r Let LI, L2 ~D~ and Kt < Lt < L 2 < K 2  �9 

There is some L3 E A ra such that L 1 < L a < K2 and R(La, g r") ~ R(K2, At~ 

Let b sconv({a} u K1) and R(P(b, 9A), St(Ta) ) = z(K1). Thus R(e(b, 9~), 

St(Ta)) = z(K2), hence e(b, 9A) is conv({a} u K2), 9A isolated. But the existence 

of such b, L~,La, K 2 was proved impossible in the last paragraph, therefore 

�9 (K1) ~ ~(K2). 

Hence z is order reversing, thus 3f'* is well ordered. Let {K~}v<~+ 1 be an iso- 

morphism between 3~* and ~ + 1. Certainly L o = K~, thus z(Lo) ~ 6. But 

LoED"~+~(V), hence by Lemma 7.4, Lo~Dd~)+t(D~+t+v+t(V)), therefore 

L o ~ D ~ + ~ ( ~ ) ,  so Lo~O~)+~(Yr~ so ~ D  ~c~>+1 (~+I)_~D ~c~+~ (~ ) ,  

but v + 1 n Dd(V)+l(O)l) = ~f  thus 6 > v + 1 and hence ~(Lo) > v + 1. Re- 

calling the definition of �9 we deduce that P(Lo, 9~) c_ Dv+t(Si(T~)) in contra- 

diction to our assumption on L0. We now conclude that P(Lo, 92) ~ D ~+ ~(S~(T~t)) 

Z ,  and the theorem is proved. 

We now turn to prove a topological lemma. If X is a topological space and ~" 

is a partition of X we denote the quotient space by X / ~ .  The definition of X/o~ 

can be found in [3, p. 97]. If X is Hausdorff compact and ~ consists of closed 

sets then X / ~  is Hausdorff compact. 

LVMMA 7.24. Let X be a countable Hausdorff compact space, ~;" a parti- 

tion of X consisting of closed sets; let M = ~ {R(F)[F~o~} + 1, and let 

x e F e ~ ;  then R(x,X) <= M" R ( F , X / ~ )  + R(x,F). 

PROOF. We prove the lemma by induction on R(F,X/o~r). Let R(F, X/~ ~') = 0; 

then F is open in X,  X -  F is closed in X; by Lemma 7.5, R(x,X) = R(x,F) 

and the inequality holds. Suppose the inequality holds for every x e F ~ ~" such 

that R ( F , X / ~ ) <  v. We prove by induction on R(x,F) that if x e F  and 

R ( F , X / ~ )  = v then again the same inequality holds. Suppose the inequality 

holds for every x s F such that R(F, X/~ r) = v and R(x, F) < ~, ~ > 0, and let 

R(x, F) = ~ and R(F, X / ~ )  = v. Let U be a neighbourhood of x relative to X 

such that for every y e U ~ F if y # x then R(y, F) < ~. Let V be a neighbour- 

hood of F relative to X / ~  such that for every G ~ V, R(G, Xfi,  ~r) < v, and let 

W = ( ~ V) n U. W is a neighbourhood of x relative to X. If y e W and y # x 

either y e F ,  and then by the induction hypothesis and the choice of U, 
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R(y, X) < M" v + R(y, F) < My + 

or y e G # F ,  and then by the induction hypothesis on R(G, X],~) and the choice 

of  V, R(y,X) < M . R ( G , X / ~ )  + R(y,G) < M . R ( G , X / ~ )  + m =M. (R(G,X  

[o~-)+ 1) __< M . v  + ~. Therefore, for every y e  W if y ~ x then R(y,X) <M 

�9 v + ~, thus R(x, X) <= M- v + ~ = M.  R(F, X]~)  + R(x, F). 

Q.E.D 
We shall need the following corollaries. 

COROLLARY 7.25. (i) Let X be a countable Hausdorff compact space, ~,~ a 

partition of X consisting of closed set s; then R(X) < ( U F ~  R(F) + 1) 

�9 (R (X/o~ r )  + 1). 
(ii) I f  X, Y are countable Hausdorff compact spaces then 

R(X x Y) < (R(X) + 1)(R(Y) + 1). 

PROOF. (i) is proved by taking upper bounds of  both sides of  the inequality 

in Lemma 7.24 when x ranges over X .  

To prove (ii), let ~" = {X x {y} [ y e Y}; then ~,~ is a partition of X x Y con- 

sisting of  closed sets, and each F e ~z- is homeomorphic to X ,  hence R(X x Y) 

< (R(X) + 1) �9 (R(X x Y/~-) + 1). But (X x Y)/~ ' is  homeomorphic to Y and 

(ii) is proved. 

We shall now partition S2(T); each element of the partition will again be par- 

titioned. By means of  the two partitions and Lemma 7.24 and Corollary 7.25 we 

shall find an upper bound for R(S2(T)) in terms of  R(St(T)). 

Let 9.t be an ~o-saturated model of T. We first partition S2(T): if P e St(T) 

let Sp = {Q[Q e S2(T) and Q _ P} and ~ ' = { s ~ l e  ~ St(7")}. Certainly ~" is a 

partition of  S2(T) consisting of  closed sets. Let a e 1 9~1 and P = P(a, 9~). We 

now partition S~,: if K e ~  a let Sp,r = {9.JQeSl,, and there is some b e K  

such that Q = e((a, b), 9.I)}. 

Let ~ e  = {Se.,:[K e ~~  By Lemma 7.7(i), ~'j, consists of  closed subsets of  

Sj,. By Lemma 7.2 it is easy to see that ~Y" (with the order topology) is homeo- 

morphic to Se/~p.  Let S'e r = {Q I Q e SI(T) n P(K, 92~}. By Lemmas 7.2 and 

7.8(iii) S~,.~ (as a subspace of St(T)) is homeomorphic to St,,r. 

COROLLARY 7.25 and the above remarks yield: 

(1) g(se) < [ UKe~,.,R(Se,~) + 1]" [R(Selo~'e) + 1] =< [R(SI(T)) + 1]" [R(,.Yf") + 1]. 

It is again easy to see that the function P ~ S e is a homeomorphism between 

St(T) and S2(T)/ ~ hence 
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(2) R(S2(T)) < [p~?, ( r )R(Sp)+ 1] " [R(S2(T) /~ )  + I ] 

From Theorem 7.23 we deduce 

(3) I f  R(St (T) )  < v then for every a e .4, R(~g TM) < av. 

Combining (2) and (3) we obtain Theorem 7.26. 

THEOREM 7.26. I f  S I (T)  is countable and R(S t (T) )  < v then 

R(S2(T)) < ['(v + 1) ' (a ,  + 1) + 1]" (v + 1). 

It is now easy to find similar upper bounds for S,(T)  when n > 2. By Lemma 

7.9, S, (T)  is the union of a finite number of  closed subsets each of  which is homeo- 

morphic to a subset of (S2(T))"-1. By Lemma 7.5, R(Sn(T)) equals the maximum 

rank of  the mentioned closed sets. Thus R(S,(T))  <-_R((S2(T))"- 1); combining the 

last inequality with Theorem 7.26 and Corollary 7.25 we obtain Theorem 7.27. 

THEOREM 7.27. I f  S I (T)  is countable, R(SI(T))  < v, and n >= 2 then 

R(S,(T))  < [[(v + 1) "(a,  + 1) + 1] .  (v + 1)] "-1 . 

REMARK. It is easy to see that [ ( v +  1) (av+ 1 ) +  1] " ( v +  1) < v 4 . 4 + 2 0 .  

Thus if R(Sx(T))  < v then R(S2(T)) < v 4" 4 + 20. 
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